
Supplementary Material for
A Temporal Coherent Topology Optimization Approach for Assembly Planning of

Bespoke Frame Structures

1 Linear Finite Element Model of Frame Struc-
tures

Our finite element analysis (FEA) supports various bars’ cross-sections
and material properties. We list all variables used in our FEA formula-
tion below. We choose −y to be the gravity direction.

• L, the bar’s length [m]

• A, the cross-section area [m2]

• Jxx, the polar second moment of inertia in x-axis [m4]

• Jyy , the polar second moment of inertia in y-axis [m4]

• Jzz , the polar second moment of inertia in z-axis [m4]

• E, the Young’s modulus [kN/m2]

• G, the shear modulus [kN/m2]

• D, the density [kg/m3]

• g, the gravitational acceleration [kN/kg]

• M , the 3 × 3 transformation matrix from the local to the global
coordinate system.

• K local
b , the 12× 12 stiffness matrix in the local coordinate system

• Kb, the 12× 12 stiffness matrix in the global coordinate system

• wb, the 12× 1 self-weight vector in the global coordinate system

Let’s assume a local coordinate system whose origin is the bar’s start
point b0 and x-axis is the bar’s axial direction b1−b0. The local stiffness
matrix K local

b in this coordinate system can be formulated by assembling
sub-matrices for four modes of reaction, including axial force, torsional
force around the x-axis, as well as bending around y and z-axes. These
submatrices are written below as K local

row indices×column indices. These are stan-
dard formulas derived from quasi-static elastic beam theory and can be
found in all structural analysis books, e.g. [McGuire et al.(1982)].

x-axial K local
{0,6}×{0,6} =


EA

L
−EA

L

−EA

L

EA

L



x-torisonal K local
{3,9}×{3,9} =


GJxx

L
−GJxx

L

−GJxx

L

GJxx

L



y-bending K local
{2,4,8,10}×{2,4,8,10} =

EJyy

L



12

L2
− 6

L
− 12

L2
− 6

L

− 6

L
4

6

L
2

− 12

L2

6

L

12

L2

6

L

− 6

L
2

6

L
4



z-bending K local
{1,5,7,11}×{1,5,7,11} =

EJzz

L



12

L2

6

L
− 12

L2

6

L

6

L
4 − 6

L
2

− 12

L2
− 6

L

12

L2
− 6

L

6

L
2 − 6

L
4


The stiffness matrix Kb of bar b in the global coordinate system is:

Kb =

M M
M

M


T

K local
b

M M
M

M


The gravitational load due to the self-weight of bar b in the global coor-
dinate system is represented by lumping the uniformly distributed load
to the bar’s two ends as wb:

w{6,7,8} = w{0,1,2} =


0

−0.5ALDg

0



w{3,4,5} =
L2

12
MT


0 0 0

0 0 −1

0 1 0

M


0

−0.5ADg

0



w{9,10,11} = −L2

12
MT


0 0 0

0 0 −1

0 1 0

M


0

−0.5ADg

0





2 Branch-and-Bound Solver
In this section, we first give a detailed explanation of our branch-and-
bound solver (i.e., Knitro). Following that, we discuss the influence of
our solver’s parameters on the effectiveness and efficiency of solving
our sequence planning formulation. Lastly, we compare the results gen-
erated by our HOLISTIC and z-LANDMARK approach from our bench-
mark.

2.1 Algorithm Explanation
To illustrate how our branch-and-bound method functions, let’s consider
a simple example of a linear mixed-integer optimization problem with
three binary variables.

min
x0, x1, x2

3x0 − 2x1 + 1.5x2

s.t. x0 + 0.5x1 + x2 ≥ 1,

x1 + x2 ≤ 2,

x0, x1, x2 ∈ {0, 1}

(1)

Figure 1 demonstrates the search trees of a brute force method for solv-
ing this mixed integer optimization. The search starts with computing
the value of the highlighted node in Figure 1(a) by solving a relaxation
problem of Equation 1, where all binary constraints are discarded:

min
x0, x1, x2

3x0 − 2x1 + 1.5x2

s.t. x0 + 0.5x1 + x2 ≥ 1,

x1 + x2 ≤ 2,

0 ≤ x0, x1, x2 ≤ 1

(2)

which provides the current best lower bound of the original mixed-
integer optimization (Equation 1). Then, the search split the problem
into two sub-problems by setting x0 = 0 or 1; see Figure 1(b)(c). The
value of the highlighted node in Figure 1(c), for instance, is computed
by solving the relaxation optimization in Equation 2 with an additional
constraint x0 = 1. Note that the current best lower bound always equals
to the minimum value of all nodes in the search frontier. The search
continues splitting the sub-problems by setting xi = 0 or 1 until all bi-
nary variables are determined. This breadth-first-search inevitably needs
to examine all possible combinations of variables except for nodes with
infinity value (i.e., infeasible solutions); see Figure 1(e), making it to be
less efficient.

More advanced solvers (e.g., Knitro) often use predefined heuristics to
compute locally optimal solutions, which helps trim the search tree and
reduce computational time. Figure 2 demonstrates the search trees of
a more efficient approach for solving the mixed integer optimization in
Equation 1. The key strategy to accelerating the search is first to find
a feasible binary solution x0 = 1, x1 = 1, x2 = 0 using the depth-
first-search; see Figure 2(d). Thus, the objective of the best incumbent
solution is 1. Then, all children of highlighted nodes in Figure 2(f)(g)
are trimmed because their parents already have a large lower bound value
than the incumbent solution, saving a significant amount of computation.

2.2 Solver’s Parameters
In Knitro 13.1, the search heuristics are governed by the
MIP HEURISTIC STRATEGY parameter, offering four options (NONE,
BASIC, ADVANCED, and EXTENSIVE). Through experimentation,
we observed that the NONE heuristic fails to converge in the majority
of test cases. The distinctions among the other three heuristics are
relatively minor. We favor the ADVANCED heuristic due to its consistent
performance. A convergence plot utilizing various MIP heuristics is
illustrated in Figure 3.

In addition to search heuristics, the order in which variables are binarized
can also have a significant impact on computation time. In Figure 1 and

2, we pre-determine the search order such that x0 is binarized first, fol-
lowed by x1, and then x2. The search order can be altered by adjusting
PRIORITY values in Knitro 13.1. Figure 3(b) displays a comparison of
solving the same assembly sequencing problem with and without us-
ing PRIORITY values. In this work, we cannot identify a set of priority
values that could be effectively applied across all sequencing problems.
As a result, we refrained from predefining any PRIORITY values when
benchmarking our algorithm. Nonetheless, determining the appropriate
priority values is a promising topic for future research.

2.3 Comparisons between HOLISTIC and z-LANDMARK ap-
proach

As shown in Figures 7 and 14 in the main content, our z-LANDMARK
solver can only find sub-optimal solutions. However, only some models
in our benchmark can cause our z-LANDMARK solver to perform sub-
optimally. A current limitation of our HOLISTIC solver is that the solver
sometimes cannot converge within the specified time limit. This con-
vergence issue becomes more pronounced when h, the number of bars
installed simultaneously, is low (e.g., h < 4) or when the total number
of bars n is high (e.g., n ≥ 40).

In some scenarios, such as when h = 6, 10 and n < 40, both our HOLIS-
TIC solver and z-LANDMARK solver can perform effectively. However,
due to the convergence issue faced by our HOLISTIC solver in some test
models, its average assembly cost is marginally higher than that of our
z-LANDMARK solver. For instance, when h = 6 and n < 40, our
HOLISTIC solver results in lower assembly costs for 14 out of 21 mod-
els than our z-LANDMARK solver. Nonetheless, its average is still 1%
higher than that of the z-LANDMARK solver due to the presence of 3
non-converged sequences. Please refer to Figure 4 for detailed compar-
isons.

3 Convexity Proof
Our branch and bound solver relies on accurately calculating the lower
bound of each tree node, which requires the relaxation problem to be
convex. Here, we prove that the relaxation of our temporal coherent
sequential topology optimization is a convex optimization problem. Be-
cause all constraints are linear, we only need to prove its objective is a
convex function.

Theorem 3.1 The compliance C(ρ) is a convex function of the bar
thickness ρ.

We can prove this theorem by computing the gradient and Hessian of C
with respect to its variables ρ.

∂C

∂ρ
=

(
∂F

∂ρ

)T

U − 1

2
UT ∂K

∂ρ
U (3)

∂2C

∂ρ2
=

(
∂U

∂ρ

)T

K

(
∂U

∂ρ

)
(4)

The Hessian of C is clearly a semi-positive matrix and therefore C is
a convex function with respect to its variables. Because our objective
function is a summation of all compliances, the relaxation problem of
our sequential topology optimization is convex.

4 Greedy & Beam Search
This paragraph describes our implementation of greedy for determining
the sequence in both single or multiple bar assembly processes. Since
greedy search can be viewed as a specific case of beam search, we focus
on explaining the beam search method instead.

We use our state graph to guide the search. Our method stores all can-
didate graph nodes in a priority queue (e.g., Fibonacci heap) and sorts
them in the ascending order of their assembly costs. Starting by pushing
the start node into the queue with 0 cost, our method only expands the
top X nodes of the priority queue. The remaining nodes are discarded.



Figure 1: An illustration of solving the mixed integer optimization specified in Equation 1 through a breadth-first binary tree search. Unvisited nodes
are shown in transparent colors. (a) The initial step of the binary tree search involves solving the relaxed problem (Equation 2). (b) The node value is
determined by solving the relaxed optimization with an extra constraint, x0 = 0. (c) The current best lower bound is 1.0 as 1.0 = min(1.5, 1.0). The top
node’s value of−0.5 is disregarded since it is no longer part of the search frontier. (e) The descendants of the highlighted node are pruned as the current
additional binary constraints (x0 = 0, x1 = 1) already lead to an infeasible optimization. (i) A feasible solution is founded (x0 = 0, x1 = 0, x2 = 1).
However, the current best lower bound still remains less than the incumbent objective, causing the solution to be non-globally optimal (1.0 < 1.5).(l)
A globally optimal solution is founded (x0 = 1, x1 = 1, x2 = 0) since the current best lower bound is equivalent to the incumbent objective.

Figure 2: A visualization of solving the mixed integer optimization defined in Equation 1 using a tree search with heuristics. (d) Utilizing a depth-first-
search, the search initially identifies a feasible solution (x0 = 1, x1 = 1, x2 = 0). (f) The descendants of the highlighted node are disregarded, and
the search stops going deeper, as finding a better solution is impossible given that the lower bound of the highlighted node is already greater than the
current best incumbent solution, with 3.0 > 1.0. (g) The global optimal solution is confirmed, as the current best lower bound is equal to the incumbent
objective.



Figure 3: (a) A comparison in optimization convergence using three distinct heuristic settings in Knitro 13.1 for determining the assembly sequence
of the ROBOARCH model, with the installation of 4 parts at a time. The ADVANCED heuristic demonstrates the best performance. (b) A comparison
in optimization convergence for determining the assembly sequence of the TOWER model, with the installation of 5 parts at a time. Knitro enables the
assignment of priority values P t

i to each variable ρti for our temporal coherent topology optimization, facilitating a reduction in computational time.
Higher priority values result in branching the respective variables first. In this illustration, we assign P t

i = −t, compelling the solver to prioritize
sub-assemblies with fewer bars. Employing this priority strategy, the optimization converges in 17 s, compared to 735 s without utilizing the strategy.
However, this specific priority strategy does not consistently generate good results across all test examples.

Figure 4: The histogram shows the relative ratio of the assembly cost
found by the HOLISTIC and the z-LANDMARK approach from Table 1
and 2 in the main content. We have excluded test models for which our
HOLISTIC solver clearly failed to converge. The models presented in this
figure represent 9.5%, 42.9%, 32.4% and 82.4% of the test models for
h = 1, 4, 6, and 10, respectively.

Algorithm 1 Sequence Planning with Beam Search

v0.cost = 0
vi.cost =∞, ∀i > 0
priority queue Q← v0
while Q ̸= ∅ do

new priority queue Q′ ← ∅
for k ← 1 to X do

u← Q.pop()
if u = vfinal then

return u
for v ∈ V and (u, v) ∈ E do

c← u.cost + v.compliance
if v.cost > c then

v.prev← u ▷ store assembly sequence
v.cost← c ▷ update assembly cost
Q′ ← v

Q = Q′

We cache the cost of the nodes that have already been explored to save
time from performing duplicated FEA for computing costs. The newly
explored nodes are then added to the queue. We repeat this procedure
until the final node is reached. We present a pseudocode of the baseline
algorithm in the Algorithm 1. We refer to this beam search solver with a
beam width X as the X -BEAM method. This beam search implementa-
tion degenerates to the greedy search when setting X = 1.

Table 1 shows that the performance of our beam search implementa-
tion is heavily affected by the beam width X . A large beam width X
helps reduce the assembly cost but can significantly increase the pro-
gram’s running time and memory consumption. Practically, our beam
search implementation with X = 100 works well in generating assem-
bly plans for frame structures with h = 1. However, our beam search
implementation runs significantly slower when h ≥ 3 and n ≥ 50. This
is because the number of successors of almost every search node grows
exponentially with h, which significantly slows down the search pro-
cess. Since beam search is unable to manage most multi-bar assembly
processes effectively, we only include their benchmarking results in this



supplementary material.

Interestingly, integrating this beam search method with our z-
LANDMARK technique can reduce overall computation time for multi-
bar assembly processes. As shown in Table 1, our z-LANDMARK method
initially computes two temporally coherent landmarks, splitting the en-
tire planning problem into three sub-problems. We subsequently ad-
dress each of these sub-problems using our beam search method. Due to
the significant reduction in undecided bars within each sub-problem, our
beam search can effectively determine the assembly sequence for each
sub-problem. However, for single bar assembly processes, although our
2-LANDMARK solver can significantly shorten the time required to solve
each sub-problem between landmarks, it still has a relatively large over-
head when computing the landmarks. As a result, the average compu-
tation time of our 2-LANDMARK solver is longer compared to the 100-
BEAM method in the single-bar settings.

5 Frame structure dataset
To benchmark our algorithms, we manually selected 100 models from
the Thingi10k dataset [Zhou and Jacobson(2016)] and then used li-
bigl’s [Jacobson et al.(2018)] edge-collapse algorithm to reduce their
total number of edges. Figure 5 depicts these models, demonstrating a
large variety of geometrical and topological features. The dataset, along
with all the other models and results shown in the paper, is available at
https://github.com/KIKI007/sequencer_benchmark

References
Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++

geometry processing library. https://libigl.github.io/.

William McGuire, Richard H Gallagher, and H Saunders. 1982. Matrix
structural analysis. (1982).

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset
of 10,000 3D-Printing Models. arXiv preprint arXiv:1605.04797
(2016).

https://github.com/KIKI007/sequencer_benchmark


Table 1: This table examines how beam width X can affect the quality and computational time required to determine the assembly sequence for
both single and multiple-bars-at-a-time assembly processes using our 100-model dataset. BEAM refers to our beam search implementation, while
LANDMARK denotes our landmark approach that calculates two temporally coherent landmarks and addresses each subproblem with our beam
search. The first column shows the maximum step size h. The third column shows the beam width X used for computing the assembly sequences. The
table entries are marked with ”-” if running the corresponding algorithm takes more than 1000s.

h Methods X
Assembly Cost Time (s)

Small Medium Large Small Medium Large

1

BEAM

1 1 1 1 0.01 (0.00∼0.01) 0.02 (0.01∼0.04) 0.06 (0.02∼0.25)
10 0.80 (0.48∼1.00) 0.75 (0.35∼0.99) 0.81 (0.44∼1.00) 0.06 (0.03∼0.08) 0.12 (0.08∼0.21) 0.47 (0.18∼1.7)
100 0.78 (0.41∼0.99) 0.67 (0.34∼0.99) 0.75 (0.35∼1.00) 0.56 (0.26∼0.74) 1.2 (0.73∼2.1) 5.0 (1.7∼19.4)

1000 0.77 (0.40∼0.99) 0.65 (0.34∼0.99) 0.71 (0.29∼1.00) 5.4 (2.5∼7.2) 11.4 (7.2∼20.4) 55.3 (17.5∼235)
10000 0.77 (0.40∼0.99) 0.64 (0.34∼0.99) 0.69 (0.28∼1.00) 53.6 (23.0∼71.9) 116 (73.0∼238) 706 (184∼2419)

LANDMARK

1 0.89 (0.56∼1.11) 0.80 (0.42∼1.11) 0.82 (0.50∼1.07) 1.5 (0.33∼3.1) 4.6 (0.44∼20.0) 21.2 (1.7∼59.5)
10 0.80 (0.51∼1.04) 0.69 (0.37∼1.07) 0.73 (0.36∼1.03) 1.7 (0.37∼3.3) 4.8 (0.62∼20.2) 21.6 (1.9∼61.0)
100 0.79 (0.50∼1.04) 0.67 (0.36∼1.07) 0.70 (0.28∼1.03) 1.9 (0.55∼3.6) 5.4 (1.2∼21.3) 25.7 (3.0∼79.4)

1000 0.79 (0.50∼1.04) 0.67 (0.36∼1.07) 0.69 (0.28∼1.03) 2.6 (0.56∼5.1) 10.8 (3.8∼37.8) 68.8 (13.8∼247)
10000 0.79 (0.50∼1.04) 0.67 (0.36∼1.07) 0.69 (0.28∼1.03) 2.8 (0.54∼6.3) 34.1 (4.8∼145) 455 (89.2∼1863)

4

BEAM
1 1 1 1 0.71 (0.12∼1.4) 2.3 (0.31∼12.0) 103 (1.8∼1281)

10 0.88 (0.72∼1.00) 0.85 (0.63∼0.99) - 7.3 (1.0∼16.1) 24.5 (5.6∼126) -
100 0.86 (0.66∼1.00) - - 76.6 (11.4∼169) - -

LANDMARK
1 0.95 (0.75∼1.05) 0.90 (0.61∼1.09) 0.90 (0.66∼1.13) 1.5 (0.28∼3.0) 4.7 (0.59∼19.7) 25.4 (2.2∼91.4)

10 0.90 (0.68∼1.05) 0.85 (0.50∼1.05) 0.83 (0.54∼1.03) 1.7 (0.38∼3.3) 5.3 (1.1∼21.6) 56.4 (5.8∼383)
100 0.89 (0.68∼1.05) 0.84 (0.46∼1.05) 0.82 (0.54∼1.03) 2.5 (0.54∼4.6) 9.9 (3.2∼34.2) 332 (26.1∼3082)



Figure 5: Our 100-model dataset of freeform frame structures. These structures are derived from the Thingi10k dataset (see Section 7 in the main
paper).


