
Learning to Assemble with Alternative Plans
ZIQI WANG, EPFL & HKUST, Hong Kong, China
WENJUN LIU, HKUST, Hong Kong, China
JINGWEN WANG, EPFL, Switzerland
GABRIEL VALLAT, EPFL, Switzerland
FAN SHI, NUS, Singapore
STEFANA PARASCHO, EPFL, Switzerland
MARYAM KAMGARPOUR, EPFL, Switzerland

Fig. 1. We plan the assembly process of the Vault from [Deuss et al. 2014] using our reinforcement learning (RL) framework, which consists of 62 parts. By
employing two or three robots, the structure remains stable throughout the assembly, eliminating the need for additional scaffolding. The first row shows
results from a classic search-based method, while the second and third rows present results generated by our RL-based approach. Our framework adopts an
assembly-by-disassembly strategy, in which every generated disassembly plan can be reversed to produce a feasible assembly plan. Only the grippers of
the robots are visualized, while their bodies are omitted. The color highlights on the parts indicate the probabilities of the following disassembly actions as
proposed by our RL agents. This work considers two types of disassembly actions: a robot holding a part and a robot removing a part. Assuming all robots are
identical, these two actions cannot be performed simultaneously on the same part. Their action probabilities are visualized together. The second and fourth
columns depict disassembly steps where all robots are occupied. The third column depicts steps where one of the robots is free to hold a new part. Training
the RL policies takes 21 hours for 2 robots and 9 hours for 3 robots. Using three robots to disassemble the Vault is less challenging than using two, which
leads to faster training. Once trained, the RL policies can generate alternative disassembly plans in 8 seconds. This is 400 times faster than re-running a
search-based method, which takes 53 minutes.

Authors’ addresses: Ziqi Wang, EPFL & HKUST, Hong Kong, China, ziqiw@ust.hk;

Wenjun Liu, HKUST, Hong Kong, China, wenjunliu@ust.hk; Jingwen Wang, EPFL, Lau-

sanne, Switzerland, jingwen.wang@epfl.ch; Gabriel Vallat, EPFL, Lausanne, Switzerland,

gabriel.vallat@epfl.ch; Fan Shi, NUS, Singapore, fan.shi@nus.edu.sg; Stefana Parascho,

EPFL, Lausanne, Switzerland, stefana.parascho@epfl.ch; Maryam Kamgarpour, EPFL,

Lausanne, Switzerland, maryam.kamgarpour@epfl.ch.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

We present a reinforcement learning framework for constructing assem-

blies composed of rigid parts, which are commonly seen in many historical

masonry buildings and bridges. Traditional construction methods for such

structures often depend on dense scaffolding to stabilize their intermediate as-

sembly steps, making the process both labor-intensive and time-consuming.

This work utilizes multiple robots to collaboratively assemble structures,

offering temporary support by holding parts in place without additional

scaffolding. Precomputing the robotic assembly process to ensure structural

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 0730-0301/2025/8-ART

https://doi.org/10.1145/3730824

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3730824

2 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

stability involves a time-consuming offline process due to the combinatorial

nature of its search space. However, the precomputed assembly plans may

get disrupted during real-world execution due to unforeseen changes, such

as setup modifications or delays in part delivery. Recomputing these plans us-

ing traditional offline methods results in significant project delays. Therefore,

we propose a reinforcement learning-based approach in which a neural net-

work is trained to efficiently generate alternative assembly plans for a given

structure online, enabling adaptation to external changes. To enable effective

and efficient training, we introduce three key innovations: a GPU-based

stability simulator for parallelizing simulations, a novel curriculum-based

training scheme to address sparse rewards during training, and a new graph

neural network architecture for efficiently encoding assembly geometry.

We validate our approach by training reinforcement learning agents on

various assemblies and evaluating their performance on unseen assembly

tasks. Furthermore, we demonstrate the effectiveness of our framework in

planning multi-robot assembly processes, effectively handling disruptions

in both simulation and physical environments.

CCS Concepts: • Computing methodologies→ Planning for determin-
istic actions; Massively parallel and high-performance simulations.

Additional Key Words and Phrases: Assembly sequence planning, reinforce-

ment learning, GPU-accelerated simulation.

ACM Reference Format:
Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana

Parascho, and Maryam Kamgarpour. 2025. Learning to Assemble with Al-

ternative Plans. ACM Trans. Graph. 44, 4 (August 2025), 16 pages. https:

//doi.org/10.1145/3730824

1 INTRODUCTION
Assembly is a key element of modern manufacturing. It enables

the production of complex and large-scale products by combining

simpler and modular components. Recent advancements in automa-

tion, particularly the introduction of robotic assembly lines, have

significantly improved the efficiency and precision of many assem-

bly processes. However, the majority of assembly automation is

only feasible in mass production due to its repetitive nature. The

growing demand for low-volume yet highly customized products,

such as personalized toys [Chen et al. 2022; Ge et al. 2024] and

architectural structures [Deuss et al. 2014; Huang et al. 2021], poses

significant challenges to existing robotic assembly processes. Ad-

dressing these challenges requires developing new computational

methods to automate the planning of robotic assembly processes.

This work aims to advance customized fabrication [Baudisch and

Mueller 2017] by automating the assembly of rigid parts, which

has applications such as customized masonry vaults [Block 2009]

and buildings [Whiting et al. 2009]. Assembling such structures has

traditionally relied on dense scaffolding to stabilize intermediate

assembly steps, in a time-consuming and labor-intensive process.

Developing novel, cost-effective methods for constructing these

structures remains an ongoing research challenge [Deuss et al. 2014].

Inspired by recent advancements in robotic construction [Johns et al.

2023; Wang et al. 2023b], we aim to utilize a multi-robotic assembly

system to collaboratively construct structures composed of rigid

parts without the use of additional scaffolding.

Most existing assembly planning approaches rely on precom-

puting a single assembly plan through computationally intensive

offline algorithms [Tian et al. 2024; Wang et al. 2023b]. However, in

Fig. 2. Disassembling an arch from the initial disassembly state (a) to the
target disassembly state (f) using two robots. Robots held parts are shown in
gray, and boundary parts are colored in black. (b)(c) are disassembly states
of an infeasible plan using a simple sorted-by-height policy. The disassem-
bly state of (c) is structurally unstable. (d)(e) are disassembly states of a
feasible plan, which disassembles parts from left to right using two robots
collaboratively. This figure illustrates that a top-down strategy—removing
parts from highest to lowest—can fail when disassembling an arch structure.

practice, external changes—such as modifications to the robotic as-

sembly setup, part delivery delays, or future repair and replacement

operations—can disrupt the precomputed plan. Addressing these

disruptions by re-computing new assembly plans using existing

methods causes significant delays due to their intensive offline com-

putations. This motivates us to develop a robust assembly planning

method capable of efficiently handling unexpected changes.

A straightforward approach is to enumerate all assembly plans for

constructing the given structure in advance. However, the number

of plans grows combinatorially with the increase in the number of

parts and the number of robots involved, making the enumeration

computationally infeasible. Figure 1 illustrates three examples of

feasible plans for constructing the Vault structure [Deuss et al.

2014] using two or three robotic arms.

To address this problem, we first simplify it by considering an

abstract planning problem where robots and parts are assumed

to have no collision bodies, and all robots are treated as identical.

We also adopt the assembly-by-disassembly strategy [Wilson 1992],

which first computes the disassembly plan and reverses it to obtain a

feasible assembly plan. This strategy simplifies the planning problem

by gradually reducing its size through the removal of parts. In

the following, we primarily focus on disassembly planning as our

core methodology; however, our main objective remains to solve

assembly planning problems.

We propose addressing this abstract disassembly planning prob-

lem for a given structure using reinforcement learning (RL). The

core of our approach is to train a neural network, referred to as the

disassembly policy, which maps a disassembly state to a probability

distribution over potential next disassembly actions, prioritizing

those with the highest likelihood of success. A disassembly state

encodes the status of each part, such as whether it is installed and

whether it is temporarily held. A disassembly action involves either

removing a part or holding it in place. The advantage of training

such a disassembly policy is that, when an unexpected event occurs,

a new disassembly action can be efficiently generated by sampling

from the policy based on the updated disassembly state. Note that

manually designing an effective disassembly policy is challenging.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3730824
https://doi.org/10.1145/3730824

Learning to Assemble with Alternative Plans • 3

Simple policies, such as sorting by height, cannot disassemble an

arch using two robots, as illustrated in Figure 2.

Training an effective disassembly policy faces two significant

challenges. First, training requires evaluating the structural stability

of numerous incomplete disassembly states using simulation, which

becomes a significant bottleneck in training. Second, each training

episode involves a large number of disassembly steps, with a re-

ward only provided at the end of the episode. This results in sparse

rewards during training, reducing the signal available to train on,

and limiting its ability to generate diverse disassembly plans. To

address these challenges, we first develop a new GPU-accelerated

physics simulator that solves structural stability problems in par-

allel. Then, we introduce a novel learning scheme inspired by the

curriculum learning approach [Bengio et al. 2009], in which our

disassembly policy is trained on tasks with progressively increasing

complexity. Finally, a physics-inspired graph neural network (GNN)

is proposed as the architecture for the disassembly policy. This novel

architecture improves data efficiency during training and facilitates

potential policy transfer across similar structures.

Our disassembly policy can be extended to handle robotic disas-

sembly processes that require strict collision avoidance. First, part

disassemblability is incorporated into the training of our disassem-

bly policy, ensuring that each part can be removed along a linear

trajectory without colliding with the remaining structure. Next, we

introduce a hybrid method for robotic disassembly planning. Our

approach leverages the pretrained disassembly policy as a heuris-

tic to guide the selection of high-level disassembly tasks, while a

robotic motion planner [Sundaralingam et al. 2023] is employed to

compute the low-level robotic disassembly motions. Specifically, we

make the following contributions:

• We develop a GPU-based rigid body equilibrium simulator

that solves batches of stability problems in parallel on GPUs

using a modified alternating direction method of multipliers.

• We introduce a novel curriculum-based learning scheme to

train disassembly policies via reinforcement learning.

• We propose a novel force-torque graph attention network

architecture to serve as our disassembly policy.

• We propose a hybrid approach that combines our pre-trained

policy with a robotic motion planner, showcasing its effec-

tiveness in assembling structures using multiple robot arms

in both simulation and real-world environments.

The code and dataset are available at https://github.com/KIKI007/

LearningToAssemble.

2 RELATED WORK
Assembly sequence planning (ASP) is a foundational topic in computer-

aided design and manufacturing. The goal of assembly sequence

planning is to determine a physically feasible sequence for construct-

ing a given assembly. Structural stability and disassemblability are

two key feasibility criteria commonly considered in assembly se-

quence planning, as discussed in Section 2.1. The combinatorial

nature of the planning space makes assembly sequence planning a

challenging NP-hard problem. Traditional methods formulate assem-

bly sequence planning as a tree search and utilize problem-specific

search heuristics to accelerate the planning process, as detailed in

Section 2.2. Recently, learning-based approaches have been intro-

duced to address the challenges in assembly sequence planning, as

described in Section 2.3.

2.1 Feasibility Assessment for Assembly Plans
Structural stability. To ensure safety, all intermediate assembly

states must be structurally stable under gravity. Structural stability

is often verified by a simulator, which evaluates each step of the

planned sequence by predicting the movement of parts.

One area of research relevant to this work focuses on evaluating

the structural stability of assemblies composed of rigid parts, which

have applications in mechanical systems [Tian et al. 2024], masonry

walls [Johns et al. 2020], and masonry shells [Deuss et al. 2014;Wang

et al. 2023b]. Physically-based simulators, such as MuJoCo [Todorov

et al. 2012], Isaac Sim [Liang et al. 2018], and incremental potential

contact (IPC) [Ferguson et al. 2021; Li et al. 2020a], are capable of

simulating the dynamics of complex assemblies. When assessing

stability during assembly, static analysis is generally sufficient and

computationally more efficient. Two widely used approaches for

modeling contact problems in the evaluation of structural stability

are the rigid body equilibrium method [Whiting et al. 2009] and

the linear complementarity problem [Kao et al. 2022; Kaufman et al.

2008; Yao et al. 2017]. A comprehensive summary of simulating

contact problems can be found in a recent SIGGRAPH course [An-

drews et al. 2022a]. GPUs have been employed to parallelize stability

simulations [Lan et al. 2022; Liang et al. 2018]. However, previous

works have primarily focused on parallelizing simulations across

different structures. In contrast, this work emphasizes parallelizing

the simulation of different assembly states for the same structure.

This problem presents a unique mathematical structure that can be

further optimized for efficient computation on GPUs.

Recent research also evaluates the structural stability of assem-

blies made of deformable elements [Huang et al. 2021; Wang et al.

2023a]. For such assemblies, structural stability is measured as a

continuous metric rather than a binary state, considering factors

like maximum structural deformation or stress. In fact, most additive

manufacturing processes, such as robotic spatial printing [Huang

et al. 2024, 2016], can be viewed as a continuous assembly of de-

formable parts. These additive manufacturing studies face similar

challenges, including the need to minimize structural deformation

during the printing process. Our method is not directly applicable

to planning assembly sequences involving deformable parts, as this

lies outside the scope of the current work. However, the proposed

approach—particularly the curriculum-based training scheme—has

the potential to be extended to handle assemblies with deformable

elements in future research.

Disassemblability. During assembly, whether parts are installed

manually or by robots, avoiding collisions is essential to prevent

damage and ensure safety. For manual assembly, a collision-free part

insertion trajectory must be computed before installing the part.

The directional blocking graph [Wilson 1992] is an effective method

for computing linear installation trajectories for parts. If parts are

assembled using complex non-linear trajectories, such as screwing,

[Tian et al. 2022] introduces a novel algorithm based on physics-

based simulation. This approach calculates the sequence of external

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://github.com/KIKI007/LearningToAssemble
https://github.com/KIKI007/LearningToAssemble

4 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

forces and torques required to remove a part, which can then be

reversed to determine the corresponding parts’ installation trajecto-

ries. This work focuses on installing parts using linear trajectories,

with complex non-linear trajectories left for future work.

When robots are used for assembly, it is necessary to plan both the

part insertion trajectories and the corresponding robot joint angle

trajectories. Collisions must be avoided between the robots and the

installed components, as well as between the robots themselves.

Sampling-based methods, such as the rapidly exploring random tree

(RRT) [LaValle 1998] and the probability road map (PRM) [Kavraki

et al. 1996], along with their variants, are commonly employed

to determine collision-free robot trajectories. Optimization-based

approaches are employed tominimize assembly time in collaborative

scenarios involving multiple robots [Hartmann et al. 2022]. This

work leverages the GPU-based robotic motion planner, CuRobo

[Sundaralingam et al. 2023], which facilitates the parallelization of

planning robot motions for a batch of assembly tasks. However,

the CuRobo framework is limited to low-level motion planning

functions, and directly applying it can result in inconsistent robotic

motions during transitions between assembly actions. To address

these motion incompatibilities, we develop a novel graph-based

motion planning framework to provide high-level motion planning

for both assembly and disassembly actions.

2.2 Heuristics-based Assembly Sequence Planning
Tree search with backtracking is one of the most commonly used

methods in assembly sequence planning [Tian et al. 2022]. To avoid

collisions, the assembly-by-disassembly strategy [Halperin et al.

1998] is often employed, in which a disassembly sequence is first

determined using tree search and then reversed to derive the corre-

sponding assembly sequence.

However, for assemblies with many parts, the time required to

search for a feasible assembly plan becomes impractical due to the

enormous search space. To address this, the layer decomposition

approach [Deuss et al. 2014; Huang et al. 2016; Wang et al. 2023a]

has been proposed as a search heuristic to accelerate the tree search

process. The method partitions the entire assembly process into

several sub-assembly planning tasks, with each task having prede-

fined start and end assembly states. These critical assembly states,

known as layers, are determined using mixed-integer optimization.

Tree searches are then used to solve each sub-assembly planning

task, which begins and ends at two adjacent layers. By limiting the

number of parts to plan within each sub-assembly planning task,

this approach significantly reduces the overall planning time. Still,

both approaches are expensive offline precomputation algorithms

that generate only a single assembly plan. This work focuses on

developing an efficient assembly sequence planner for the same

structure, designed to effectively mitigate real-world disruptions.

2.3 Learning-based Assembly Planning
Learning-based approaches have recently gained significant at-

tention in addressing challenges in assembly. First, reinforcement

learning-based approaches are employed to address the simulation-

to-reality gaps in controlling robots for assembling parts in real-

world scenarios. Applications include assembling timber beams

[Apolinarska et al. 2021], LEGO structures [Chen et al. 2023], mag-

netically connected parts [Kataoka et al. 2023], and irregular stones

[Menezes et al. 2021]. A recent work [Ha et al. 2020] utilizes expert

data generated by classical motion planning algorithms to accelerate

the planning of multiple robot trajectories.

Learning-based approaches have been applied to generate feasi-

ble assembly sequences. Funk et al. [2021] employ a combination

of deep RL and Monte Carlo Tree Search (MCTS) to learn to stack

cubes. Ghasemipour et al. [2022] utilize Proximal Policy Optimiza-

tion (PPO) to assemble parts connected by magnets. Kulshrestha

et al. [2023] leverage simulation data to train a neural network for

the rearrangement of block-stacking assemblies. Li et al. [2020b]

introduce a curriculum-based approach to address block-stacking

problems using robots. Graph neural networks (GNN) have been uti-

lized to encode assembly geometry for training assembly sequence

planning policies [Funk et al. 2021; Ghasemipour et al. 2022; Tian

et al. 2024]. A hybrid approach combining search algorithms with

learning-based heuristics is employed to address challenging assem-

bly planning problems, such as maze-like 3D puzzles [Zhang et al.

2020] and mechanical assemblies [Tian et al. 2024]. Additionally,

recent works leverage reinforcement learning to explore the design

of stable assemblies that can be constructed by robots, including

two-dimensional structures [Vallat et al. 2023], stacking blocks [Li

et al. 2022], and LEGO designs [Chung et al. 2021].

Our work builds upon the development of learning-based as-

sembly sequence planning. However, most existing works focus on

training neural networks to solve general assembly planning prob-

lems, which become increasingly difficult to train as the number

of parts grows. Besides, creating a training dataset of customized

masonry vaults and buildings is highly challenging due to the vast

design space. Therefore, our work focuses on addressing assembly

planning problems for the same structure, enabling the efficient gen-

eration of alternative assembly plans with varying initial and target

states. Our approach is designed to effectively mitigate real-world

disruptions in assembly sequence planning.

3 PROBLEM FORMULATION
This work aims to address a collaborative assembly planning prob-

lem in which 𝑛 robots are used to assemble a given structure made

of𝑚 rigid parts. The 𝑛(𝑛 < 𝑚) robots can temporarily hold parts to

provide additional support during assembly. Our approach follows

the assembly-by-disassembly strategy, in which a disassembly plan

is generated first and then reversed to obtain the assembly plan.

Illustrated in Figure 3, a disassembly state 𝒔 represents a partial

disassembly step, indicating whether each part remains in the as-

sembly and whether a robot temporarily holds it. Our main goal is to

train a disassembly policy 𝜋 (· | 𝒔) for a given structure. The policy

maps the current disassembly state 𝒔 to a probability distribution

of the following disassembly actions. When a disruption changes

the current disassembly state 𝒔′, an alternative disassembly action

𝒂′ can be efficiently generated by sampling from the disassembly

policy 𝒂′ ∼ 𝜋 (· | 𝒔′). This facilitates real-time disassembly planning

processes for the given structure.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Learning to Assemble with Alternative Plans • 5

Fig. 3. We demonstrate the first three steps of a disassembly process for
the Bottle model using dual robotic arms. Each part’s state is represented
by two binary values: the first indicates existence, while the second indi-
cates whether it is held by robots. Parts held by robots are shown in grey,
and remaining installed parts are displayed in white. Boundary parts are
emphasized with a dark color. To remove part 𝑃1, robot #2 needs first to
hold the part and proceed with its removal, while robot #1 is required to
hold 𝑃0 to provide temporary support.

To enhance readability without introducing excessive physical

constraints, we present our framework by first disregarding colli-

sions between robots or parts and treating all robots as interchange-

able. This allows us to concentrate on abstract disassembly states

and disassembly actions without specifying which robot holds a

particular part. Later, we extend our method to include robot-related

physical constraints in Section 6.2.

The component of a disassembly state 𝑠𝑖 consists of two binary

values indicating whether the 𝑖-th part still exists and whether it is

held by any of the robots. The component of the disassembly action

𝑎𝑖 consists of two binary values indicating whether the 𝑖-th part is

to be removed or to be held. Figure 3 illustrates the state and action

in a two-robot disassembly process. Again, the reason each 𝑎𝑖 has

only two binary values is that we do not distinguish which robot

executes the action on the part. The disassembly rules are:

(1) Each part can only be held once.

(2) At most 𝑛 parts can be held simultaneously.

(3) A part must be held before it can be removed.

(4) One action (holding or removing) is executed per step.

In this work, releasing a held part without removing it (e.g., re-

grasp) is not permitted to prevent an infinite planning horizon.

Additionally, simultaneously removing multiple parts per step is not

allowed. Both are considered future work discussed in Section 8.

A disassembly process starts with a given disassembly state, 𝒔0.
The first disassembly action 𝒂0 is sampled using 𝒂0 ∼ 𝜋 (· | 𝒔0). The
next disassembly state 𝒔1 is obtained deterministically by applying

the disassembly action 𝒂0 to the current disassembly state 𝒔0. A
physically-based simulator is employed to evaluate the stability of

𝒔1. If 𝒔1 is found to be unstable, a reward of−1 is assigned. Otherwise,
the process continues by sampling new disassembly actions, 𝒂1 ∼

𝜋 (· | 𝒔1), 𝒂2 ∼ 𝜋 (· | 𝒔2), and so on. This process terminates with a

reward of +1 when all installed parts in 𝒔0 have been successfully

removed. The intermediate disassembly states form a disassembly

sequence, {𝒔0, 𝒔1, · · · , 𝒔𝑁 }. By reversing this disassembly sequence,

a feasible assembly sequence is obtained {𝒔𝑁 , · · · , 𝒔0}.

4 GPU-BASED STABILITY SIMULATOR
This section presents a fully parallelizable, physically-based sim-

ulator optimized for analyzing the structural stability of multiple

incomplete assemblies on GPUs. Section 4.1 explains the general for-

mulation of our structural stability simulations as a specific type of

quadratic programming (QP) problem and outlines the approach for

solving these QP problems on GPUs. Section 4.2 presents the rigid

body equilibrium method and discusses the adjustments necessary

to optimize it for GPU computation.

4.1 ADMM-QP Solver
Evaluating the stability of a structure in a given disassembly state

𝒔 is formulated as a quadratic programming (QP) [Whiting et al.

2009]:

min

𝒙

1

2

𝒙𝑇𝑸 (𝑠)𝒙 + 𝒒(𝒔)𝑇 𝒙

s.t. 𝒃𝑙 (𝒔) ≤ 𝑨(𝑠)𝒙 ≤ 𝒃𝑢 (𝒔)
(1)

Our key observation is that changes to the disassembly state 𝒔 do
not affect the quadratic term (𝑸 = 𝑸 (𝑠)) or the linear constraints
(𝑨 = 𝑨(𝑠)). This unique property enables the development of an

efficient GPU-based solver, inspired by the Alternating Direction

Method of Multipliers (ADMM) [Parikh et al. 2014] and its QP-

specific version, Operator Splitting Quadratic Programming (OSQP)

[Stellato et al. 2020]. We refer to our new GPU-based QP solver as

the ADMM-QP solver.

𝑳 = 𝑸 + 𝜎𝑰 +𝑨𝑇 𝝆𝑨 (2)

�̂�𝑘+1 = 𝑳−1
[
𝜎𝒙𝑘 − 𝒒 +𝑨𝑇 (

𝝆𝒛𝑘 −𝒚𝑘
)]

(3)

𝒙𝑘+1 = 𝛼�̂�𝑘+1 + (1 − 𝛼)𝒙𝑘 (4)

𝒛𝑘+1 = Π[𝒃𝑙 ,𝒃𝑢] (𝛼𝑨�̂�𝑘+1 + (1 − 𝛼)𝒛𝑘 + 𝝆
−1𝒚𝑘) (5)

𝒚𝑘+1 = 𝒚𝑘 + 𝝆 (𝛼𝑨�̂�𝑘+1 + (1 − 𝛼)𝒛𝑘 − 𝒛𝑘+1) (6)

where 𝒙𝑘 ,𝒚𝑘 , 𝒛𝑘 are primal, dual, and slack variables, and 𝛼, 𝜎 , and

𝝆 are parameters introduced in the OSQP paper [Stellato et al. 2020].

We choose 𝛼 = 1.6 and 𝜎 = 10
−6
.

The most computationally expensive step is solving the sparse

linear system defined in Equation 3. Fortunately, by selecting a

constant 𝝆 = 𝜌𝑰 , the matrix 𝑳 becomes constant and can be pre-

computed. We choose 𝜌 = 0.1. In contrast, second-order methods,

such as the interior point method [Boyd 2004], have a non-constant

Karush–Kuhn–Tucker (KKT) system that depends on the disassem-

bly state 𝒔, making them challenging to solve efficiently on GPUs.

In our experiment, the most effective approach to solving the

linear system is to pre-compute the inverse matrix 𝑳−1 directly, as
demonstrated in Equation 3. GPU-based pre-factorization methods,

such as Cholesky LLT [Nicolet et al. 2021], while providing higher

accuracy, are significantly slower than the direct matrix inversion

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

Table 1. List of symbols used for stability simulations.

Variable Description
𝝀𝑛 The magnitude of the normal force impulse.

𝝀𝑡 The magnitude of friction impulse.

𝑱𝑛 The normal parts of the contact Jacobian.

𝑱𝑡 The tangential parts of the contact Jacobian.

𝒇 The support force provided by robots

𝒈 The generalized gravity force.

𝜇 The friction coefficient.

𝑴 The generalized mass matrix.

𝒇𝑢 The maximum absolute value of support force.

𝝀𝑢 The maximum magnitude of contact force impulse.

𝑷 The part projection matrix.

𝑪 The contact projection matrix.

method on GPUs. Since our ADMM-QP solver relies solely on ma-

trix multiplication, a batch of stability instances can be efficiently

simulated in parallel on GPUs. In our implementation, the variables

𝑥𝑘 , 𝑦𝑘 , and 𝒛𝑘 are matrices where each column represents a sample

in the batch. These variables are initialized to zero. To achieve suf-

ficient precision, our solver is executed on an NVIDIA H100 GPU

with support for double-precision floating-point arithmetic (FP64).

4.2 GPU-based Stability Simulator
In this section, we present our GPU-based stability simulator, adapted

from the rigid body equilibriummethod [Whiting et al. 2009], which

simulates the stability of rigid bodies under frictional contacts. Our

contribution is to leverage the fact that 𝐿−1 is constant for different
disassembly states 𝒔, allowing for an efficient parallelization. Our

notation, summarized in Table 1, follows that of the SIGGRAPH

course [Andrews et al. 2022b].

The 𝝀𝑛 and 𝝀𝑡 = {𝝀𝑡𝑘 } are normal and tangential force impulses

defined on contact points. Each 𝝀𝑡𝑘 represents a frictional force

along a tangential direction of the contact plane. This work uses

eight tangential directions to approximate the friction cone. The

𝑱𝑇𝑛 𝝀𝑛 and 𝑱𝑇𝑡 𝝀𝑡 (=
∑
𝑘 𝑱𝑇𝑡𝑘𝝀𝑡𝑘) are the resultant of the normal and

friction force impulse acting on parts. The rigid body equilibrium

method seeks to identify a feasible 𝝀𝑛,𝝀𝑡 that satisfies the linear
inequality constraints:

𝑷
(
𝑱𝑇𝑛 𝝀𝑛 + 𝑱𝑇𝑡 𝝀𝑡 + 𝒈

)
= 0 (7)

0 ≤ 𝝀𝑛 ≤ 𝑪𝝀𝑢 (8)

0 ≤ 𝝀𝑡𝑘 ≤ 𝑪𝝀𝑢 (9)

0 ≤ 𝜇𝝀𝑛 −
∑
𝝀𝑡𝑘 (10)

Equation 7 represents the force-torque equilibrium conditions, where

the part projection matrix 𝑷 excludes constraints for held parts as

well as removed parts. Equation 8, 9 imposes constraints on the

range of the force impulses, where the contact projection matrix

𝑪 ensures that normal or frictional impulses are zero on parts that

have been removed. Equation 10 represents the Coulomb friction

condition, with 𝜇 = 0.55.

Fig. 4. Structural stability simulation of the Bottle using the rigid body
equilibrium method. (a) A disassembly state of the Bottle with one miss-
ing part. (b) The imbalanced internal forces computed using Equation 13,
including normal (blue), frictional (red), and gravitational forces (orange),
and (c) the imbalanced motions of parts computed using Equation 14.

This feasibility problem can be addressed using a QP solver by in-

troducing a zero-valued objective. However, our ADMM-QP solver

cannot be used to solve this problem because the matrix 𝑷 in Equa-

tion 7 depends on the disassembly state 𝒔. To tackle this challenge,

we introduce an additional variable, the support force 𝒇 , and replace
Equation 7 with the following:

𝑱𝑇𝑛 𝝀𝑛 + 𝑱𝑇𝑡 𝝀𝑡 + 𝒈 + 𝒇 = 0 (11)

−[1 − 𝑷]𝒇𝑢 ≤ 𝒇 ≤ [1 − 𝑷]𝒇𝑢 (12)

Equation 12 ensures that support forces are only applied to unin-

stalled and temporarily held parts. The new GPU-based stability

simulator is then written as:

min

𝝀𝑛,𝝀𝑡 ,𝒇

1

2

∥𝑱𝑇𝑛 𝝀𝑛 + 𝑱𝑇𝑡 𝝀𝑡 + 𝒈 + 𝒇 ∥2𝑴−1

s.t. 0 ≤ 𝝀𝑛 ≤ 𝑪𝝀𝑢

s.t. 0 ≤ 𝝀𝑡𝑘 ≤ 𝑪𝝀𝑢

− [1 − 𝑷]𝒇𝑢 ≤ 𝒇 ≤ [1 − 𝑷]𝒇𝑢

0 ≤ 𝜇𝝀𝑛 −
∑
𝝀𝑡𝑘

(13)

where ∥𝒙 ∥2
𝑴−1

= 𝒙𝑇𝑴−1𝒙 . The generalized mass matrix 𝑀 is a

block-diagonal matrix, where each block represents the generalized

massmatrix of a part. Each component of𝝀𝑢 and𝒇𝑢 is set to 10
5
. The

objective function minimizes the work done by the residual forces.

Its objective and linear constraint coefficients are independent of

the disassembly states 𝒔, making it compatible with our ADMM-QP

solver.

Figure 4 (b) shows the optimal force outputs generated by our

simulator for an unstable disassembly state. Our simulator uses

residual velocity to verify the stability of a disassembly state 𝒔,
which is computed as follows:

𝒗 = 𝑴−1 (𝑱𝑇𝑛 𝝀𝑛 + 𝑱𝑇𝑡 𝝀𝑡 + 𝒈 + 𝒇) (14)

The disassembly state 𝒔 is considered stable if ∥𝒗∥∞ ≤ 10
−3
, and

otherwise unstable. The residual velocity provides a more intuitive

way to understand the instability by illustrating the movement of

parts in an unstable disassembly state; see Figure 4(c).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Learning to Assemble with Alternative Plans • 7

Fig. 5. Simulate the stability of the Vault model from Figure 1. (a) The
infinity norm of the velocity residual is plotted against the number of ADMM
iterations for various penalty coefficients 𝜌 , as defined in Equation 3. The
y-axis is plotted on a log scale. (b) A comparison of the performance between
a CPU-based QP solver (Gurobi) and our ADMM-QP solver when simulating
the stability of the Vault multiple times in batch by setting 𝜌 = 0.3. The
graph illustrates the average simulation time as a function of batch size.

Using our ADMM-QP solver, our stability simulator efficiently

evaluates a batch of disassembly states in parallel on GPUs. The

simulator evaluates the disassembly states’ residual velocity every

200 ADMM iterations and excludes the disassembly states that al-

ready satisfy the stability condition. Additional ADMM iterations

are performed until the stability of all partial states is determined or

the iteration limit (e.g., 3000) is reached. The remaining undecided

disassembly states are then classified as unstable.

The simulation time is directly proportional to the total number

of ADMM iterations performed. The ADMM method typically ex-

hibits a linear convergence rate, as visualized in Figure 5 (b). For

this test case, compared to commercial CPU-based QP solvers like

Gurobi, our ADMM-QP solver can achieve up to a 100× speedup.

Figure 5(c) illustrates the performance of our GPU-based stability

simulator across various batch sizes when simulating the Vault

model multiple times. A detailed performance evaluation is provided

in Section 7.1. It is worth noting that less efficient performance is

observed for small batch sizes (≤ 16), primarily due to the significant

overhead of GPU computation.

5 REINFORCEMENT LEARNING
This section introduces our reinforcement learning approach for

planning the disassembly process by training a disassembly policy.

Our disassembly policy is trained to disassemble an𝑚-part structure

using 𝑛 robots. Collisions are ignored, and all robots are considered

indistinguishable. Section 5.1 discusses the challenges of using an

off-the-shelf reinforcement learning method, Proximal Policy Opti-

mization (PPO) [Parikh et al. 2014], to train our disassembly policy.

Section 5.2 presents our curriculum-based training scheme to effi-

ciently address the challenge of sparse rewards. Section 5.3 extends

our policy to plan disassembly processes between two arbitrary dis-

assembly states. Lastly, Section 5.4 introduces a graph-based neural

network architecture for the disassembly policy.

Fig. 6. We train an off-the-shelf PPO agent to plan the disassembly process
of the Vault, starting from its complete state using two robots. (a) The PPO
agent converges to a local minimum. Disassembling the Vault requires at
least 94 actions (highlighted by the dashed line), but all training episode
terminates after taking 55 actions. (b) This is one of the most common dis-
assembly states encountered before termination. The agent cannot proceed
further, as removing either 𝑃1 or 𝑃2 leads to unstable states, as illustrated
in (c) and (d).

5.1 Disassembly Policy Training
A disassembly policy 𝜋 (·|𝒔) takes the current disassembly state 𝒔 as
input, outputting a probability distribution over the next possible

disassembly actions. A training rollout, or episode, involves using

the policy to plan the disassembly process, starting from an initial

disassembly state and continuing until reaching the empty state.

A reward is given at the end of each episode. The reward is +1
if a feasible disassembly plan is found; otherwise, it is −1. Offline

reinforcement learning methods, such as Deep Q-Networks (DQN)

[Mnih 2013] and Soft Actor-Critic (SAC) [Haarnoja et al. 2018],

can be employed for training. This work trains the disassembly

policy using the Proximal Policy Optimization (PPO) algorithm

[Schulman et al. 2017], selected for its widespread adoption and

robust performance across various applications [Berner et al. 2019;

Hoeller et al. 2024; Yang et al. 2023].

Training a policy using PPO to disassemble a given structure

is challenging due to the sparsity of the reward signal, which is

provided only at the termination of each episode. Our PPO agent

struggles to robustly plan the disassembly process for structures

with more than 10 parts, even when multiple parallel disassembly

rollouts (e.g., 64) are employed to improve its exploration. Figure 6

illustrates the results of training an agent with an off-the-shelf PPO

algorithm to disassemble the Vault model using two robots. We

employ a simple 3-layer multi-layer perceptron (MLP) as the policy

network. Due to the lack of positive rewards, the disassembly policy

converges to a local minimum, repeatedly getting stuck in the same

disassembly state, as shown in Figure 6 (b).

5.2 Curriculum Learning
In our experiment, we can train PPO policies to disassemble struc-

tures with a small number of parts (e.g., ≤ 10), but fail to robustly

disassemble structures with more than 10 parts. The training dif-

ficulty lies in the fact that the ratio of feasible plans to the total

number of possible plans decreases significantly as the number of

parts increases. The off-the-shelf PPO algorithm cannot sample a

single feasible disassembly plan, not even by chance.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

Fig. 7. An assembly state graph of the Bottle is generated using a beam
search to plan its assembly process with two robots. Each node represents
a stable assembly state, while duplicated and unstable states are excluded
from the graph. Each edge corresponds to a feasible assembly action. The
nodes form an effective dataset for training our disassembly policy.

The key research question is how to enable our PPO agent to ob-

tain positive rewards during training without changing the reward

function. A key insight is that instead of initializing the training to

disassemble the entire structure, we start with a partial disassembly

state. If the initial disassembly state contains only a small number

of parts, the PPO method can find a feasible disassembly plan and

receive a positive reward. We gradually increase the number of parts

in the initial disassembly state if the policy has already learned to

handle disassembly tasks with fewer parts. Training on disassembly

tasks with an increasing number of parts aligns with the concept of

curriculum learning [Bengio et al. 2009], a strategy widely adopted

in the character animation community to address challenges such as

sparse rewards and complex motion dynamics [Xie et al. 2020]. Ad-

ditionally, introducing random state initialization has been shown

to be effective in exploring the state-action space, as demonstrated

in DeepMimic [Peng et al. 2018].

A key technical challenge is generating a training dataset of valid

initial disassembly states. An initial disassembly state is considered

invalid if no plan exists to disassemble the remaining parts starting

from it. Initializing an RL agent to disassemble starting from an

invalid initial disassembly state is bound to fail, preventing the

agent from learning effectively.

We found that the assembly state graph, generated as a byproduct

of most search-based assembly planning algorithms, serves as an

effective dataset for training our disassembly policy, as illustrated

in Figure 7. Nodes in this assembly state graph represent partial

assembly states, with the leftmost node, also known as the root node,

representing the empty state. Nodes are connected by directed edges,

each representing a feasible assembly action. An important feature

of this assembly state graph is that tracing a path from the root node

to any node represents a feasible assembly plan, while backtracking

along this path yields a valid disassembly plan. Thus, all nodes in

this state graph form our training dataset, as each represents a valid

initial disassembly state with a guaranteed disassembly plan.

This assembly state graph can be efficiently generated using a

beam search, accelerated by our GPU-based stability simulator. The

search begins with the root node of the empty state. In each iteration,

the search selects𝑊 nodes to apply assembly actions and adds the

newly discovered assembly states that are structurally stable to

the state graph. The search process terminates upon reaching the

complete structure. Please refer to the detailed algorithm provided

in the supplementary material.

5.3 Disassembly Policy Between Two States
We can extend our disassembly policy to plan the disassembly pro-

cess from an initial disassembly state 𝒔 to a non-empty target dis-

assembly state 𝒔target, denoted as 𝜋 (· | 𝒔, 𝒔target). Our extended
disassembly policy can be applied to restore structures that have

experienced partial structural collapse due to earthquakes.

A straightforward approach is to reuse the disassembly policy

𝜋 (· | 𝒔) while ensuring no parts present in the target disassembly

state 𝒔target can be removed. However, as demonstrated in the re-

sults (Section 7.2), this masked policy exhibits a significantly lower

success rate, as changing the target state can significantly alter the

disassembly process. To improve the success rate, we enhance our

training dataset by including new disassembly tasks that terminate

at non-empty target disassembly states. The new training data is

generated using the same search process described in Section 5.2.

However, instead of using an assembly state graph generated by

a search-based assembly planning method, we utilize a disassem-

bly state graph generated by a search-based disassembly planning

method.

We can further enhance the data efficiency by leveraging Hind-

sight Experience Replay (HER) [Andrychowicz et al. 2017]. A failed

disassembly plan {𝒔0, · · · , 𝒔𝑁 } inherently contains a successful dis-

assembly sub-plan {𝒔0, · · · , 𝒔𝑁−1}, which can be reused by setting

a new target disassembly state 𝒔target = 𝒔𝑁−1. Leveraging this suc-
cessful sub-plan enables the RL agent to receive positive rewards,

thereby improving data efficiency.

5.4 Force-Torque Graph Attention Network
This section discusses the neural network architecture for our dis-

assembly policy. The policy takes a disassembly state as input and

outputs the probabilities of the next possible disassembly actions.

The neural network for our disassembly policy must satisfy two

critical requirements: (1) it must produce consistent outputs re-

gardless of the indexing of parts, and (2) it must effectively utilize

contact geometry information, such as contact points and normals.

The commonly used multilayer perceptron (MLP) is unsuitable for

this purpose because it cannot handle permutation invariance with

respect to part indexing.

To address this, we employ a graph attention network as our

disassembly policy [Veličković et al. 2017], which is permutation

invariant by design. The key research question is how to effec-

tively represent the contact geometry and the disassembly state 𝒔
using a graph-based representation. A commonly used approach

for encoding parts’ geometry is the part graph [Tian et al. 2024], a

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Learning to Assemble with Alternative Plans • 9

Fig. 8. We present our force-torque graph of a four-part disassembly state.
Circles represent part nodes, red squares represent force nodes, and blue
triangles represent torque nodes. A gray circle indicates a temporarily held
part. 𝑃1 and 𝑃2 have two contact points which share the same force node
(𝒏12) and four torque nodes (𝒓0

12
, 𝒓0

21
, 𝒓1

12
, and 𝒓1

21
). To represent the direc-

tionality of the normal vector n12—which points from 𝑃1 to 𝑃2—we use two
distinct edge types (a solid line and a dashed line) to connect the force
node to the corresponding part nodes. 𝑃3 and 𝑃4 share 3 force nodes and
12 torque nodes. We use 12 torque nodes instead of 8 because a separate
torque node is assigned to the same contact point for each distinct contact
normal. Despite not being in direct contact, skip connections are included
between 𝑃1-𝑃3 and 𝑃2-𝑃3. Three force nodes are used between 𝑃3 and 𝑃4 to
represent their three distinct contact normals.

homogeneous graph in which each node represents a part. However,

this graph inevitably leads to duplications when encoding contact

information, such as contact normals and points, which are critical

components in the stability simulation. Specifically, the same con-

tact normal and contact point are redundantly encoded into both of

their associated part nodes.

To address this challenge, this work introduces a novel heteroge-

neous Force-Torque Graph (FT-Graph), inspired by the physically-

based stability simulator (Equation 13). Our FT-Graph consists of

three types of nodes: part nodes (circles), force nodes (squares),

and torque nodes (triangles); see Figure 8. Each part node includes

a binary attribute that represents whether the part is held by a

robot, as specified in the disassembly state 𝒔, and a real-valued at-

tribute that represents the mass of the part. For the extended policy

𝜋 (· | 𝒔, 𝒔target), the target disassembly state 𝒔target is also encoded

into the part nodes. Parts not included in the current disassem-

bly state 𝒔 are excluded from the graph, as no further disassembly

actions can be performed on them. Contacts between parts are en-

coded using both force nodes and torque nodes. Each contact is

composed of a contact normal 𝒏 and a contact point 𝒓 . To achieve

translational invariance, we use relative contact points 𝒓1 and 𝒓2,
where each represents the vector between the contact point and the

centroid of one of the associated parts; see Figure 8(a). Each force

node contains a contact normal 𝒏, while two torque nodes store

the relative contact points 𝒓1 and 𝒓2, respectively. Force nodes that
share the same contact normal are merged into a single force node.

Each force node is connected to its two associated part nodes

using two distinct edge types to represent the pointing direction

of the normal vector. Each torque node is connected to exactly

one force node, one part node, and one other torque node. Indeed,

torque nodes that share the same contact point are connected. All

part nodes are interconnected through skip connections, even if the

parts are not in contact; see Figure 8(b). When a part is removed, its

corresponding part node is removed along with all connected force

and torque nodes.

Our disassembly policy begins with converting the disassembly

state 𝒔 and the contact geometry into an FT-Graph. The policy then

processes this graph using the 8 Graph Attention Network (GAT)

layers, each with 16 hidden features [Veličković et al. 2017], im-

plemented with the PyG framework [Fey and Lenssen 2019]. The

output of the GAT is an FT-Graph, where each part node is repre-

sented by a feature vector containing 16 hidden channels. These

feature vectors are subsequently passed through an additional linear

layer to compute the disassembly action probabilities. Additionally,

the state value function 𝑉 , required by the PPO method, shares

the same architecture as the disassembly policy but uses a separate

linear layer for its output.

6 ROBOTIC DISASSEMBLY PLANNING
At this stage, our reinforcement learning framework allows us to

compute abstract disassembly sequences. However, additional phys-

ical constraints need to be verified when real robots are used to

execute these sequences. In this section, we demonstrate how our

framework can be extended to plan robotic disassembly processes.

Before introducing robotics, Section 6.1 discusses how to train a

disassembly policy to ensure that parts can be removed physically.

Section 6.2 presents our hybrid approach for planning robotic dis-

assembly processes by combining our trained disassembly policy

with a robot motion planner.

6.1 Part Disassemblability
In this work, a part can be physically disassembled if it can be re-

moved along a linear trajectorywithout collidingwith the remaining

structure. Complex non-linear trajectories, such as those explored

in [Tian et al. 2022], are considered a direction for future work. For

a given part, we sample 𝑑 linear trajectories (e.g., 𝑑 = 1000) and

evaluate each trajectory to determine which parts, if any, collide

with the given part. A binary lookup table 𝑇 is precomputed before

training, containing 𝑑 ×𝑚 ×𝑚 entries, where𝑚 is the number of

parts. 𝑇𝑖 𝑗𝑘 = 0 indicates that using the 𝑖-th trajectory to remove the

𝑗-th part causes collisions with the 𝑘-th part. A part can be removed

if at least one trajectory in the lookup table allows its removal with-

out colliding with any remaining parts. The part disassemblability is

enforced using an action mask that sets the probabilities of invalid

removal actions to zero.

6.2 Hybrid Robotic Disassembly Planner
We propose a hybrid method to jointly plan the disassembly se-

quence and the robot motions, as outlined in Algorithm 1. The

algorithm’s input is an initial disassembly state 𝒔 and the robots’

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

Algorithm 1: Hybrid Robotic Disassembly Planner

Data: A disassembly state 𝒔 and robots’ joint angles 𝜽
Result: A feasible robot disassembly plan.

𝑇 ← Tree(𝒔, 𝜽);
while |𝑇 | ≤ 𝑁 and 𝒔 ≠ 0 do

𝒂 ∼ 𝜋 (·|𝒔);
𝒔 ← Next State(𝒔, 𝒂);
if Stable (𝒔) then

for ˜𝜽 ∈ Keyframe(𝒂, 𝒔) do
𝜏 ←Motion Planning(𝒔, 𝜽 , ˜𝜽);
if Collision-free (𝒔, 𝜏) then
(𝒔, 𝜽) ← Add Node (𝑇, 𝒔, ˜𝜽);
break;

end
end

end
if 𝒔 ≠ 𝒔 then

𝜋 (𝒂 |𝒔) ← 0;

if
∑
𝜋 (·|𝒔) = 0 then
(𝒔, 𝜽) ← Backtrack (𝑇, 𝒔, 𝜽);

end
end

end
if 𝒔 = 0 then

return Disassembly Plan (𝑇);
end

Fig. 9. We illustrate the keyframe generation process, showcasing various
robot joint configurations that can achieve the same disassembly state. (a)
The purple robot holds the left part, and the orange robot holds the right
part. (b) Robots switch the parts they hold while still corresponding to the
same disassembly state. (c) Robots change their joint configurations while
maintaining the same grasping configuration as shown in (a). (d) A robot
joint configuration discarded due to self-collisions (highlighted in red).

initial joint angles 𝜽 . The output of the algorithm is a robotic disas-

sembly plan, which consists of a list of disassembly states and robot

joint angles {(𝒔0, 𝜽0), · · · , (𝒔𝑁 , 𝜽𝑁)}. Our hybrid algorithm is a tree

search with backtracking. A disassembly action 𝒂 is sampled at each

iteration using a pre-trained disassembly policy 𝜋 . The feasibility of

the sampled action 𝒂 is evaluated by simulating its structural stabil-

ity and planning the corresponding robotic motion. If the structure

of the next disassembly state is stable and the planned robot motion

is collision-free, the sampled action is executed, allowing the search

process to continue. Otherwise, the sampled action is discarded by

setting its probability in the disassembly policy to zero. If all actions

suggested by the disassembly policy have been attempted and failed,

the algorithm backtracks to an earlier disassembly state.

Our robot motion planning function utilizes the Curobo frame-

work [Sundaralingam et al. 2023], which offers low-level motion

planning utility functions. It can efficiently plan the robots’ motion

to transition from one joint angle configuration to another while

avoiding collisions. However, the Curobo framework does not offer

high-level utility functions for planning complex robotic disassem-

bly tasks. Specifically, the framework currently lacks a function to

find feasible robot disassembly motions to realize the disassembly

action 𝒂 generated by the pre-trained disassembly policy.

A robot configuration 𝜽 that corresponds to an abstract disassem-

bly state 𝒔 is referred to as a keyframe. Multiple keyframes exist for

the same abstract disassembly state 𝒔. Since the abstract disassembly

state does not differentiate between different robots, multiple grasp-

ing configurations can correspond to the same disassembly state, as

illustrated in Fig. 9(a) and (b). Additionally, different robots’ joint

angles can achieve the same grasping configuration, as shown in

Fig. 9(a) and (c). Keyframes that result in self-collisions or collisions

with the parts must be discarded, as illustrated in Fig. 9(d).

The keyframes form a graph referred to as the keyframe graph,

as illustrated in Fig. 10. Each row of the keyframe graph represents

feasible keyframes corresponding to the same abstract disassembly

state associated with that row. Only compatible pairs of keyframes

are connected by edges, indicating that a collision-free trajectory

exists for the robots to transition between the two keyframes. This

work assumes that only one robot can move at a time. Adjacent

keyframes in which more than one robot changes its joint angles

are incompatible and are not connected by edges. Additionally, the

collision body of the part is attached to the robot’s end effector

during the execution of the removal action. If there is no outgoing

edge from the current disassembly state in the keyframe graph,

the search backtracks. A feasible disassembly plan is a path in the

keyframe graph that connects a keyframe of the complete state to

a keyframe of the empty state. Reversing this robotic disassembly

plan results in a feasible robotic assembly plan.

7 RESULTS
We implement our method in Python, using the PyTorch and Py-

Torch Geometric frameworks for GPU-based simulation and rein-

forcement learning. The training of the disassembly policy is con-

ducted on a cluster equipped with an NVIDIA H100 GPU, 64 virtual

CPU cores, and 128 GB of memory. The robotic assembly planning

is performed separately on a desktop with an NVIDIA 4090 GPU,

32 CPU cores, and 32 GB of memory. We train our PPO agent using

a batch size of 128, a learning rate of 2× 10−3, and a discount factor
of 0.95. The disassembly policy network is composed of 8 Graph

Attention (GAT) layers, each with 16 hidden features. Section 7.1

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Learning to Assemble with Alternative Plans • 11

Fig. 10. The illustration depicts a keyframe graph, where each node represents a keyframe. Each row in the graph corresponds to a disassembly state and
contains all robot configurations (keyframes) associated with that disassembly state. Edges between keyframes indicate the existence of collision-free robot
trajectories for transitioning from one keyframe to another.

Table 2. A performance comparison is conducted to evaluate the effec-
tiveness of our ADMM-QP solver against the Gurobi solver in solving the
stability simulation of assemblies with rigid parts. The testing data is gener-
ated using a beam search with a width of 64 to plan assembly sequences
involving two robots. The results produced by the Gurobi solver serve as the
ground truth for this evaluation, and the computation time of the ADMM-
QP was done using batches of 256 samples.

Model

Name

Test Data

Stable / Unstable

ADMM-QP Gurobi

Time (ms) Acc. (%) Time (ms)

Bottle-12 2’180 / 739 4.21 99.86 6.44

Dog-35 45’658 / 1’687 5.52 99.99 8.40

Dome-37 46’226 / 3’179 4.56 99.82 15.79

Vault-62 78’185 / 7’927 16.84 99.99 90.32

Dome-72 147’694 / 8’159 15.13 99.96 101.16

evaluates the performance of our GPU-based stability simulator.

Section 7.2 evaluates the performance of our disassembly policy.

Section 7.3 demonstrates results on robotic disassembly planning.

7.1 Statistics on GPU-based Stability Simulation
We compare our ADMM-QP solver with a commercial CPU-based

QP solver, Gurobi, for solving the same rigid equilibrium problem

introduced in Section 4.2. Specifically, we compare our solver with

the CPU-based interior point method implemented in Gurobi. The

stability evaluation results generated by the Gurobi solver are con-

sidered the ground truth. Rendered versions of all test 3D models

are included in the supplementary material and can be accessed

through our project repository.

To generate a test dataset, we employ a beam search using the

Gurobi solver as the stability checker to plan the assembly process

of a given structure. All assembly states, whether stable or not, are

collected as a labeled dataset for evaluating our GPU-based stability

simulator. The beam search is performed with a width of 64, utilizing

two robots for the assembly process. Table 2 presents statistics of

our solver’s performance on various sizes and shapes of structures.

In the worst case, our solver achieves an accuracy of 99.82% and

accelerates the simulation time by a factor of 1.5 compared to the

CPU-based solver. Note that in addition to these already good results,

our method scales better with the number of parts, achieving an

average speedup of 6 times acceleration on the largest structure.

Our GPU-based stability simulator does not misclassify an un-

stable state as stable, as the solver outputs the internal forces. Veri-

fying the equilibrium conditions of these forces ensures that their

structural stability results are accurately assessed. However, our

GPU-based stability simulator may misclassify a stable state as un-

stable if the solver fails to converge within the limited number of

iterations.

7.2 Statistics on Disassembly Policy
Disassembly from an initial state. We evaluate the performance

of our disassembly policy 𝜋 (· | 𝒔), which plans the disassembly

sequence for a given structure starting from an initial state 𝒔 and
disassembles all parts that are not on the boundary. The disassembly

policy is trained on a dataset generated using a beam search with

a beam width of𝑊 = 64. For testing, we evaluate the policy on a

dataset generated using a beam search with double the beam width,

𝑊 = 128. All training data are excluded from the test dataset. Table 3

provides statistics on the performance of our disassembly policies

across various sizes and shapes of structures. Note that our algorithm

performs less effectively on the test set of theVault using two robots.

Our hypothesis for this lower accuracy is that the disassembly tasks

in the test set differ significantly from those in the training set, likely

due to its highly challenging geometry. However, we also observe

an increase in test accuracy for Vault as the number of robots

increases, since the difficulty of the disassembly task decreases with

more robots.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

Table 3. Evaluation of our disassembly policy for planning the disassembly
process with different initial states. The model name is appended with its
number of parts. All models are assembled using two robots, except for the
Vault, which is also assembled with 3 to 6 robots.

Model

Name

Training (𝑊 = 64) Testing (𝑊 = 128)

Data Time (h) Acc.(%) Data Acc.(%)

Bottle-12 1077 0.28 95.70 1159 86.53

Tetris-17 1757 0.25 98.04 2571 92.64

Tetris-14 1337 0.21 94.29 1734 86.55

Tetris-13 1228 0.15 97.33 1447 92.32

Cube-13 1820 0.29 93.74 2680 90.85

Dog-35 4216 1.14 99.15 8130 98.98

Dome-37 4540 1.6 97.36 8433 90.96

Vault-62 (2) 4781 21.3 92.32 10229 38.90

Vault-62 (3) 5876 9.5 97.86 11494 53.44

Vault-62 (4) 5082 7.62 96.18 11054 69.04

Vault-62 (5) 5618 9.85 94.59 10699 70.77

Vault-62 (6) 5619 9.84 91.24 11004 78.39

Dome-72 9018 16.05 97.64 17801 96.40

Table 4. Accuracy statistics for planning disassembly task ends at non-
empty target disassembly states using disassembly policies 𝜋 (· | 𝒔) and
𝜋 (· | 𝒔, 𝒔target) .

Method

Bottle Tetris Tetris Tetris Cube Dog Dome

12 17 14 13 13 35 37

𝜋 (· | 𝒔) 6.46 3.46 3.51 1.01 2.00 0.04 3.29

𝜋 (· | 𝒔, 𝒔target) 66.03 81.03 77.44 79.65 90.89 90.49 85.23

Additionally, our graph neural network architecture supports

policy transfer between different structures. For instance, directly

applying the policy trained on the Bottle to plan the disassembly

process of the Dog achieves an accuracy of 66% on the training set

of the Dog. This promising result highlights the potential of our

approach to serve as a foundation model for assembly planning in

future work.

Disassembly between two states. We further evaluate the accuracy

of our extended disassembly policies 𝜋 (· | 𝒔, 𝒔target), for planning
disassembly between two disassembly states. Note that the extended

policy, 𝜋 (· | 𝒔, 𝒔target), is trained on extra disassembly tasks with

non-empty target disassembly states 𝒔target generated by a beam

search with a beam width of 64. For comparison, we modify the

baseline policy, 𝜋 (· | 𝒔), by setting the probability of disassembly

actions that remove parts in 𝒔target to zero. The test dataset is gen-

erated using a beam search to plan the disassembly process of the

given structure with a beam width of 128, ensuring that the training

set is excluded. Table 4 presents the accuracy of the two policies on

the test dataset.

Policy network architecture comparisons. We compare our GNN-

based policy with a baseline policy implemented using a multi-layer

perceptron (MLP). The MLP policy comprises three hidden layers

with 64 neurons each and employs the tanh activation function.

Table 5. Comparisons of neural network architectures. The Bottle model
uses two robot arms for disassembly, whereas the Vault model employs four
robot arms. The GNN-based policy demonstrates better generalization on
the test set compared to the MLP-based policy.

Name 𝜋 (· | 𝒔) Steps

Time

(h)

Train

acc. (%)

Test

acc. (%)

Bottle-12

(2)

MLP 8’675 0.084 99.82 88.97

GNN 4’119 0.38 99.45 95.86

Vault-62

(4)

MLP 558’351 9.51 90.35 17.85

GNN 67’131 7.62 96.18 69.04

Training a PPO agent with this MLP-based policy requires a sep-

arate MLP-based value network with the same architecture. The

comparisons are shown in Table 5. First, the GNN-based policy ex-

hibits a significantly higher average training time per step, primarily

due to its less efficient computational architecture. Second, although

both policies can achieve comparable training accuracy, the MLP

policy tends to generalize poorly when solving disassembly tasks

from novel initial disassembly states. Lastly, policy transfer across

different structures is not feasible with the MLP-based approach.

Comparisons with depth-first search. We implement a depth-first

search (DFS) method to plan the disassembly processes for Bottle-

12 and Dome-37. While DFS successfully identifies a disassembly

sequence for Bottle-12 in 82 steps using 0.54𝑠 , it fails to find a

valid plan for Dome-37 within a 100,000-step limit. These results

are consistent with the sparse reward issue encountered during

our disassembly policy training, where the proportion of feasible

disassembly plans is extremely low compared to the total search

space, making it difficult to sample a feasible plan using depth-first

search.

7.3 Results on Robotic Disassembly Planning
Part disassemblability. We train disassembly policies with part

assemblability to solve disassembly problems presented in [Tian et al.

2024]; see Figure 11. Both models are disassembled using two robots.

Our disassembly policy is successfully trained to disassemble the

Bird House (top) but fails to disassemble the Bookshelf (bottom).

Our disassembly policy of the Bookshelf terminates at a deadlock

sub-assembly. This sub-assembly cannot be further disassembled if

only one part is allowed to be removed at a time. Figure 11 further

clarifies that this failure is caused by the deadlock design of the

Bookshelf.

Hybrid robotic assembly planner. We test our hybrid robotic as-

sembly planner for assembling the Dome-37 model using two ABB

IRB 2600 robot arms with fixed bases. Figure 12 presents two disas-

sembly plans generated by the same pretrained policy, each starting

from a different assembly state, with an average planning time of 5

minutes. The disassembly policy forDome-37 is trained without con-

sidering part assemblability, as each part can be removed along the

spherical normal direction without colliding with neighboring parts.

The training curriculum is constructed using a dataset generated

through beam search with a beam width of 64.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Learning to Assemble with Alternative Plans • 13

Fig. 11. (Top) A successful sequence for disassembling the Bird House, generated using our disassembly policy. (Bottom) A failed sequence for disassembling
the Bookshelf generated using our disassembly policy. The rightmost figure is a deadlock partial assembly state, where each of the four top plates has two
incompatible joints. Disassembling this structure requires the simultaneous removal of two parts, an operation not supported by either our method or [Tian
et al. 2024].

We test our hybrid planner on assembling the Vaultmodel using

three ABB IRB 2600 robots. Figure 13 illustrates two disassembly

plans with different robot layouts, achieving an average planning

time of 96 minutes. Since our policy is trained without differentiat-

ing between robots, the robot layout can be adjusted while using

the same pre-trained policy. The disassembly policy for the Vault

considers part assemblability due to its non-planar contact faces.

The policy is trained using a dataset generated through a beam

search with a beam width of 256. The total training time is 33.9

hours.

Physical demonstration. We assemble the Bottle model using

two ABB GoFa robotic arms. All parts are wooden toy pieces pur-

chased from stores, and the robot grasps them using vacuum suction

cups. Ideally, the structure would be constructed following a pre-

computed assembly sequence, as shown in Figure 14 (top). However,

delays in the delivery of the bottom three parts disrupt this planned

sequence. In response, our pre-trained disassembly policy efficiently

generates an alternative assembly plan for the robots to execute, as

shown in Figure 14 (bottom). The average deviation between the

real and simulated positions is 1.67 mm, with a maximum deviation

of 5 mm. Further details on the physical experiments, including sim-

to-real gap analysis, are provided in the supplementary material.

8 CONCLUSION & FUTURE WORK
In this work, we propose a reinforcement learning framework for

planning robotic assembly and disassembly sequences to construct

structures composed of rigid parts while ensuring the stability of

intermediate assembly steps and avoiding collisions between the

robots and the structures. We train our disassembly policy using

proximal policy optimization. To accelerate training, we develop a

GPU-based stability simulator that facilitates parallelized training by

running batches of simulations simultaneously on GPUs. To address

the challenges posed by sparse rewards in the disassembly process,

we introduce a novel curriculum-based training scheme that lever-

ages data generated by assembly planning methods to train the

disassembly policy. To improve the data efficiency of training, we

propose a graph-based neural network architecture to serve as our

disassembly policy. Our framework is further extended to accommo-

date additional physical constraints, such as part disassemblability

and collision-free robot motions. To validate the effectiveness of our

framework, we physically construct the Bottle using two robotic

arms and generate alternative plans to accommodate the disruption

caused by the absence of three bottom parts.

Limitation and future works. First, our current approach operates

under the constraint that only one robot is used at a time, with each

action removing a single part through linear motion. These assump-

tions reduce the action space, thereby making the training process

more efficient. However, this simplification limits the generality of

the method. For instance, as shown in Figure 11, some tasks require

the simultaneous removal of multiple parts—something our method

cannot currently accommodate. Moreover, disassembly tasks involv-

ing rotational motions, such as unscrewing, are also beyond our

method’s capability. More importantly, deploying multiple robots

simultaneously enables parallel task execution, significantly reduc-

ing the overall completion time. To overcome these limitations, we

plan to extend our framework by enabling dynamic task allocation

across multiple robots and incorporating a wider range of disassem-

bly motions in future work.

Second, as pointed out by previous studies

[Kao et al. 2022; Yao et al. 2017], a limitation of

the rigid body equilibrium method is its inabil-

ity to detect structural instability caused by

sliding failures. For example, the highlighted

part in the inset, which is expected to fall un-

der gravitational forces, is erroneously iden-

tified as stable by the rigid body equilibrium

method. Recent works [Kaufman et al. 2008;

Yao et al. 2017] propose a staggered projection

approach to address this sliding failure issue

by alternately solving two QP problems. The

supplementary material demonstrates that the two QP problems in

the staggered projection approach are compatible with our ADMM-

QP solver. However, the staggered projection approach, even when

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

14 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

Fig. 12. Two disassembly sequences of the Dome-37 generated using our framework with two robots. Our disassembly policy can efficiently generate alternative
disassembly plans from different assembly states.

Fig. 13. Two disassembly sequences of the Vault generated using our framework with three robots. We can reuse the same disassembly policy to replan the
process, effectively accommodating changes in robot layouts.

Fig. 14. Physically assembling the Bottle using two ABB GoFa robots. (Top) The robots follow a precomputed assembly plan when all parts are available.
(Bottom) Our disassembly policy generates an alternative assembly plan to adapt to the absence of the bottom three parts.

accelerated by GPUs, remains too slow for practical use in RL train-

ing. Further accelerating the staggered projection approach on GPUs

helps to narrow the sim-to-real gaps.

Third, our approach does not support re-grasping, which would

allow robots to release a part they are holding without removing

it. The challenge of considering re-grasping actions is the resulting

infinite planning horizon, where robots can repeatedly hold and

release parts without achieving meaningful progress. This infinite

planning horizon problem is difficult to solve using search-based

methods, but can be addressed with reinforcement learning by em-

ploying a discount factor of less than 1 (𝛾 < 1). We plan to extend

our framework to include re-grasping actions by redesigning the

reward function to penalize disassembly plans that require more

steps.

Fourth, the maximum number of parts in our test case is 72.

Although our GPU-based simulator can verify the stability of as-

semblies with up to 150 parts, training a policy to disassemble

models with such a large number of parts remains extremely time-

consuming. To mitigate this, we plan to further optimize our frame-

work to support policy training on large-scale clusters usingmultiple

GPUs. Additionally, our current policy must be retrained for each

new model, as its transferability is limited and requires further in-

vestigation. To enhance generalizability and accelerate training, we

are also interested in exploring alternative reinforcement learning

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Learning to Assemble with Alternative Plans • 15

methods, such as DQN [Mnih 2013], SAC [Haarnoja et al. 2018], and

MCTS-based approaches like AlphaGo [Silver et al. 2017].

Fifth, our FT-Graph is effective for encoding assemblies with

planar contacts. However, it becomes less efficient when encoding

assemblies with curved contacts due to the large number of contact

points and normals involved. To address this, we plan to cluster

these contact points and normals and encode them as hidden fea-

tures, reducing the total number of nodes in our FT-Graph, thereby

accelerating both training and inference.

Lastly, despite our disassembly policy being capable of achieving

instant inference, the robotic motion planner remains a bottleneck

in our hybrid disassembly planning framework, as it still requires a

considerable amount of planning time. Moreover, although our dis-

assembly policy can accommodate many robots, the hybrid robotic

disassembly planning method does not scale well due to the combi-

natorial complexity of the task. In this work, our method is limited

to generating robotic assembly plans involving up to three robot

arms. We plan to train a separate robotic motion planning policy

by leveraging methods such as [Ha et al. 2020]. This future work

will pave the way for the development of a truly real-time robotic

assembly planner.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments. This research

was supported by the EPFL Center for Intelligent Systems, the

HKUST start-up grant and NUS Presidential Young Professorship

grant (A-0009982-00-00).

REFERENCES
Sheldon Andrews, Kenny Erleben, and Zachary Ferguson. 2022a. Contact and Friction

Simulation for Computer Graphics. In ACM SIGGRAPH 2022 Courses (Hybrid Event,

Vancouver, Canada) (SIGGRAPH ’22). Association for Computing Machinery, New

York, NY, USA, Article 2, 124 pages.

Sheldon Andrews, Kenny Erleben, and Zachary Ferguson. 2022b. Contact and friction

simulation for computer graphics. In ACM SIGGRAPH 2022 Courses. Association for

Computing Machinery, New York, NY, USA, 1–172.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter

Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.

2017. Hindsight experience replay. Advances in neural information processing systems
30 (2017).

Aleksandra Anna Apolinarska, Matteo Pacher, Hui Li, Nicholas Cote, Rafael Pastrana,

Fabio Gramazio, and Matthias Kohler. 2021. Robotic assembly of timber joints

using reinforcement learning. Automation in Construction 125 (May 2021), 103569.

https://doi.org/10.1016/j.autcon.2021.103569

Patrick Baudisch and Stefanie Mueller. 2017. Personal Fabrication. Foundations and
Trends® in Human–Computer Interaction 10, 3–4 (May 2017), 165–293. https://doi.

org/10.1561/1100000055

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curricu-

lum learning. In Proceedings of the 26th annual international conference on machine
learning. Association for Computing Machinery, New York, NY, USA, 41–48.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak,

Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.

2019. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680 (2019).

Philippe Philippe Camille Vincent Block. 2009. Thrust network analysis: exploring three-
dimensional equilibrium. Ph. D. Dissertation. Massachusetts Institute of Technology.

Stephen Boyd. 2004. Convex optimization. Cambridge university press, Cambridge, UK.

Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel. 2022. Computational design of

high-level interlocking puzzles. ACM Transactions on Graphics (TOG) 41, 4 (2022),
1–15.

Yuanpei Chen, Chen Wang, Li Fei-Fei, and C Karen Liu. 2023. Sequential Dexterity:

Chaining Dexterous Policies for Long-Horizon Manipulation. In 7th Conference on
Robot Learning.

Hyunsoo Chung, Jungtaek Kim, Boris Knyazev, Jinhwi Lee, Graham W Taylor, Jaesik

Park, and Minsu Cho. 2021. Brick-by-brick: Combinatorial construction with deep

reinforcement learning. Advances in Neural Information Processing Systems 34 (2021),
5745–5757.

Mario Deuss, Daniele Panozzo, Emily Whiting, Yang Liu, Philippe Block, Olga Sorkine-

Hornung, and Mark Pauly. 2014. Assembling Self-Supporting Structures. SIGGRAPH
Asia 33, 6 (2014), 214:1–214:10.

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,

Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021.

Intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021).
Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with

PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).
Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters. 2021. Learn2Assemble

with Structured Representations and Search for Robotic Architectural Construction.

In 5th Annual Conference on Robot Learning. London., UK.
Jiahao Ge, Mingjun Zhou, Wenrui Bao, Hao Xu, and Chi-Wing Fu. 2024. Creating LEGO

Figurines from Single Images. ACM Transactions on Graphics (TOG) 43, 4 (2024),
1–16.

Seyed Kamyar Seyed Ghasemipour, Satoshi Kataoka, Byron David, Daniel Freeman,

Shixiang Shane Gu, and Igor Mordatch. 2022. Blocks assemble! learning to assemble

with large-scale structured reinforcement learning. In International Conference on
Machine Learning. PMLR, 7435–7469.

Huy Ha, Jingxi Xu, and Shuran Song. 2020. Learning a Decentralized Multi-arm Motion

Planner. In Conference on Robotic Learning (CoRL). arXiv.
Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochastic

actor. In International conference on machine learning. PMLR, 1861–1870.

Dan Halperin, Jean-Claude Latombe, and Randall HWilson. 1998. A general framework

for assembly planning: The motion space approach. In Proceedings of the fourteenth
annual symposium on Computational geometry. 9–18.

Valentin N Hartmann, Andreas Orthey, Danny Driess, Ozgur S Oguz, and Marc Tou-

ssaint. 2022. Long-horizon multi-robot rearrangement planning for construction

assembly. IEEE Transactions on Robotics 39, 1 (2022), 239–252.
David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. 2024. Anymal parkour:

Learning agile navigation for quadrupedal robots. Science Robotics 9, 88 (2024),

eadi7566.

Yijiang Huang, Caelan Reed Garrett, Ian Ting, Stefana Parascho, and Caitlin Tobin

Mueller. 2021. Robotic additive construction of bar structures: Unified sequence and

motion planning. Construction Robotics (2021), 115–130.
Yuming Huang, Yuhu Guo, Renbo Su, Xingjian Han, Junhao Ding, Tianyu Zhang, Tao

Liu, Weiming Wang, Guoxin Fang, Xu Song, et al. 2024. Learning Based Toolpath

Planner on Diverse Graphs for 3D Printing. ACM Transactions on Graphics (TOG)
43, 6 (2024), 1–16.

Yijiang Huang, Juyong Zhang, Xin Hu, Guoxian Song, Zhongyuan Liu, Lei Yu, and

Ligang Liu. 2016. Framefab: Robotic fabrication of frame shapes. ACM Transactions
on Graphics (TOG) 35, 6 (2016), 1–11.

Ryan Luke Johns, Martin Wermelinger, Ruben Mascaro, Dominic Jud, Fabio Gramazio,

Matthias Kohler, Margarita Chli, and Marco Hutter. 2020. Autonomous dry stone:

On-site planning and assembly of stone walls with a robotic excavator. Construction
Robotics 4, 3-4 (Dec. 2020), 127–140. https://doi.org/10.1007/s41693-020-00037-6

Ryan Luke Johns, Martin Wermelinger, Ruben Mascaro, Dominic Jud, Ilmar Hurkxkens,

Lauren Vasey, Margarita Chli, Fabio Gramazio, Matthias Kohler, and Marco Hutter.

2023. A framework for robotic excavation and dry stone construction using on-site

materials. Science Robotics 8, 84 (2023), eabp9758.
Gene Ting-Chun Kao, Antonino Iannuzzo, Bernhard Thomaszewski, Stelian Coros, Tom

Van Mele, and Philippe Block. 2022. Coupled rigid-block analysis: Stability-aware

design of complex discrete-element assemblies. Computer-Aided Design 146 (2022),

103216.

Satoshi Kataoka, Youngseog Chung, Seyed Kamyar Seyed Ghasemipour, Pannag Sanketi,

Shixiang Shane Gu, and Igor Mordatch. 2023. Bi-Manual Block Assembly via Sim-

to-Real Reinforcement Learning. arXiv preprint arXiv:2303.14870 (2023).
Danny M Kaufman, Shinjiro Sueda, Doug L James, and Dinesh K Pai. 2008. Staggered

projections for frictional contact in multibody systems. In ACM SIGGRAPH Asia
2008 papers. 1–11.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. 1996. Probabilis-

tic roadmaps for path planning in high-dimensional configuration spaces. IEEE
transactions on Robotics and Automation 12, 4 (1996), 566–580.

Manav Kulshrestha and Ahmed H Qureshi. 2023. Structural Concept Learning via

Graph Attention for Multi-Level Rearrangement Planning. In 7th Annual Conference
on Robot Learning.

Lei Lan, Guanqun Ma, Yin Yang, Changxi Zheng, Minchen Li, and Chenfanfu Jiang.

2022. Penetration-free projective dynamics on the GPU. ACM Transactions on
Graphics 41, 4 (July 2022), 1–16. https://doi.org/10.1145/3528223.3530069

Steven LaValle. 1998. Rapidly-exploring random trees: A new tool for path planning.

Research Report 9811 (1998).
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy R Langlois, Denis Zorin,

Daniele Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020a. Incremental po-

tential contact: intersection-and inversion-free, large-deformation dynamics. ACM

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1016/j.autcon.2021.103569
https://doi.org/10.1561/1100000055
https://doi.org/10.1561/1100000055
https://doi.org/10.1007/s41693-020-00037-6
https://doi.org/10.1145/3528223.3530069

16 • Ziqi Wang, Wenjun Liu, Jingwen Wang, Gabriel Vallat, Fan Shi, Stefana Parascho, and Maryam Kamgarpour

Trans. Graph. 39, 4 (2020), 49.
Richard Li, Allan Jabri, Trevor Darrell, and Pulkit Agrawal. 2020b. Towards Practical

Multi-Object Manipulation using Relational Reinforcement Learning. In ICRA. IEEE,
4051–4058. https://doi.org/10.1109/ICRA40945.2020.9197468

Yunfei Li, Tao Kong, Lei Li, and Yi Wu. 2022. Learning Design and Construction

with Varying-Sized Materials via Prioritized Memory Resets. In ICRA. IEEE Press,

Philadelphia, PA, USA, 7469–7476. https://doi.org/10.1109/ICRA46639.2022.9811624

Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin,

and Dieter Fox. 2018. Gpu-accelerated robotic simulation for distributed reinforce-

ment learning. In Conference on Robot Learning. PMLR, 270–282.

Andre Menezes, Pedro Vicente, Alexandre Bernardino, and Rodrigo Ventura. 2021. From

Rocks to Walls: a Model-free Reinforcement Learning Approach to Dry Stacking

with Irregular Rocks. In 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE, Nashville, TN, USA, 2057–2065. https:

//doi.org/10.1109/CVPRW53098.2021.00234

Volodymyr Mnih. 2013. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

Baptiste Nicolet, Alec Jacobson, andWenzel Jakob. 2021. Large steps in inverse rendering

of geometry. , 13 pages. https://github.com/rgl-epfl/cholespy

Neal Parikh, Stephen Boyd, et al. 2014. Proximal algorithms. Foundations and trends®
in Optimization 1, 3 (2014), 127–239.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel Van de Panne. 2018. Deepmimic:

Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions On Graphics (TOG) 37, 4 (2018), 1–14.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew

Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-

pel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2017. Mastering

Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.

arXiv:1712.01815 [cs.AI] https://arxiv.org/abs/1712.01815

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd.

2020. OSQP: An operator splitting solver for quadratic programs. Mathematical
Programming Computation 12, 4 (2020), 637–672.

Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam Fishman, Caelan Garrett,

Karl Van Wyk, Valts Blukis, Alexander Millane, Helen Oleynikova, Ankur Handa,

Fabio Ramos, Nathan Ratliff, and Dieter Fox. 2023. CuRobo: Parallelized Collision-

Free Robot Motion Generation. In 2023 IEEE International Conference on Robotics and
Automation (ICRA). 8112–8119. https://doi.org/10.1109/ICRA48891.2023.10160765

Yunsheng Tian, Karl DDWillis, Bassel Al Omari, Jieliang Luo, Pingchuan Ma, Yichen Li,

Farhad Javid, Edward Gu, Joshua Jacob, Shinjiro Sueda, et al. 2024. ASAP: automated

sequence planning for complex robotic assembly with physical feasibility. In ICRA.
IEEE, 4380–4386.

Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl D.D. Willis,

and Wojciech Matusik. 2022. Assemble Them All: Physics-Based Planning for

Generalizable Assembly by Disassembly. ACM Trans. Graph. 41, 6, Article 278 (2022),
15 pages.

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine for

model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 5026–5033. https://doi.org/10.1109/IROS.2012.6386109

Gabriel Vallat, Jingwen Wang, Anna Maddux, Maryam Kamgarpour, and Stefana

Parascho. 2023. Reinforcement learning for scaffold-free construction of spanning

structures. In SCF ’23: Proceedings of the 7th Annual ACM Symposium on Compu-
tational Fabrication. Association for Computing Machinery, New York, NY, USA.

https://doi.org/10.1145/3623263.3623359

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and

Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903
(2017).

Jingwen Wang, Wenjun Liu, Gene Ting-Chun Kao, Ioanna Mitropoulou, Francesco

Ranaudo, Philippe Block, and Benjamin Dillenburger. 2023b. Multi-robotic assembly

of discrete shell structures. In Advances in Architectural Geometry 2023. De Gruyter,
261–274.

Ziqi Wang, Florian Kennel-Maushart, Yijiang Huang, Bernhard Thomaszewski, and

Stelian Coros. 2023a. A Temporal Coherent Topology Optimization Approach for

Assembly Planning of Bespoke Frame Structures. ACM Transactions on Graphics
(SIGGRAPH 2023) 42, 4 (2023).

Emily Whiting, John Ochsendorf, and Frédo Durand. 2009. Procedural modeling of

structurally-sound masonry buildings. In ACM SIGGRAPH Asia 2009 papers. 1–9.
Randall H. Wilson. 1992. On Geometric Assembly Planning. Ph. D. Dissertation. Stanford

University.

Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de Panne. 2020. Allsteps:

curriculum-driven learning of stepping stone skills. In Computer Graphics Forum,

Vol. 39. Wiley Online Library, 213–224.

Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao. 2023. Learning based 2D

irregular shape packing. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1–16.

Jiaxian Yao, Danny M Kaufman, Yotam Gingold, and Maneesh Agrawala. 2017. In-

teractive design and stability analysis of decorative joinery for furniture. ACM
Transactions on Graphics (TOG) 36, 2 (2017), 1–16.

Xinya Zhang, Robert Belfer, Paul G Kry, and Etienne Vouga. 2020. C-space tunnel

discovery for puzzle path planning. ACM Transactions on Graphics (TOG) 39, 4
(2020), 104–1.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1109/ICRA40945.2020.9197468
https://doi.org/10.1109/ICRA46639.2022.9811624
https://doi.org/10.1109/CVPRW53098.2021.00234
https://doi.org/10.1109/CVPRW53098.2021.00234
https://github.com/rgl-epfl/cholespy
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.1109/ICRA48891.2023.10160765
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1145/3623263.3623359

	Abstract
	1 Introduction
	2 Related Work
	2.1 Feasibility Assessment for Assembly Plans
	2.2 Heuristics-based Assembly Sequence Planning
	2.3 Learning-based Assembly Planning

	3 Problem Formulation
	4 GPU-based Stability Simulator
	4.1 ADMM-QP Solver
	4.2 GPU-based Stability Simulator

	5 Reinforcement Learning
	5.1 Disassembly Policy Training
	5.2 Curriculum Learning
	5.3 Disassembly Policy Between Two States
	5.4 Force-Torque Graph Attention Network

	6 Robotic Disassembly Planning
	6.1 Part Disassemblability
	6.2 Hybrid Robotic Disassembly Planner

	7 Results
	7.1 Statistics on GPU-based Stability Simulation
	7.2 Statistics on Disassembly Policy
	7.3 Results on Robotic Disassembly Planning

	8 Conclusion & Future work
	Acknowledgments
	References

