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Abstract

Temporary bar structures made of reusable standardized components are

widely used in construction, events, and exhibitions. They are economical,

easy to assemble, and can be disassembled and reused in various structural

arrangements for various purposes. However, existing reusable temporary

structures are either limited to modular yet repetitive designs or require be-

spoke components, which restricts their reuse potential. Instead of designing

bespoke kit of parts for limited reuse, this paper investigates how to design

and build diverse freeform structures from one homogeneous kit of parts.

We propose a computational framework to generate multi-tangent bar struc-

tures, a widely used jointing system, which allows bars to be joined at any

point along their length with standard connectors. We present a mathemati-

cal formulation and a numerical scheme to optimize the bar spatial positions

and contact assignment simultaneously, while ensuring that the constraints of

tangency, collision, joint connectivity, and bar length are satisfied. Together
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with simulated case studies, we present two physical prototypes that reuse

the same kit of parts using an augmented reality-guided assembly workflow.

Keywords: Reuse, kit of parts, computational design, space frames,

multi-tangent, joints, mixed reality, assembly

1. Introduction1

This paper concerns the design and rapid making of freeform, temporary2

bar structures with limited material resources that can be reused across sev-3

eral service cycles. Temporary bar structures are used broadly and in great4

variety in architecture, construction, engineering, and arts. Built out of kits5

of parts consisting of linear elements and joints to connect them, 3D bar6

structures can have complex geometries and topologies, for reasons related7

to structural efficiency, aesthetics, site conditions, or functional constraints.8

Unambiguously defining a spatial bar network requires specifying the9

lengths of each bar and its relative pose to its neighbors. Existing bar systems10

usually address this by cutting bars to unique lengths and using customized11

joints to encode the spatial orientations. Examples include bespoke ball-and-12

socket joints [4] and 3D printed connectors [16, 14]. However, due to their13

customized geometries, these complex joints require long fabrication time14

and high costs. Moreover, such joint customization also limits the part kit’s15

design possibility and reuse potential, since the parts are "frozen" once fabri-16

cated and their geometric and topological information are engrained into the17

bar length and joint configurations. In this work, our aim is to design and18

build structures that can adapt to rapidly changing needs, but with minimal19

virgin materials and manufacturing efforts. In contrast to using a bespoke20
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kit of parts for each bespoke structure, we propose using a standardized,21

mass-produced kit for designing many bespoke structures (fig. 1).22

Figure 1: Diverse freeform multi-tangent structures can be built from a homogeneous kit

of parts consisting of bars and standard connectors. Bars and connectors are assembled,

disassembled, and reused among structures across service cycles.

We propose a new computational framework to augment an existing joint-23

ing system, called a multi-tangent structure, to achieve freeform structures.24

A multi-tangent bar system offsets bars in tangent contact with one or more25

other bars, which are then joined through reusable connectors. From in-26

digenous building cultures to modern construction standards, such systems27

are widely used to rapidly build spatial trusses where mass customization of28

joints is not economical. Common examples include rope ties for bamboo29

structures, wire ties for rebar cages, and construction scaffolding (fig. 2). Be-30

cause no custom joints are required and bars can remain uncut, no physical31

trace will be left on the kit once disassembled, and the kit can be reused32

to build diverse structures. However, the multi-tangent structures used in33

practice are mostly designed manually and prior research on computation-34

ally designing them restricts design freedom to a small subset of possible35

topologies, e.g., rectilinear or reciprocal patterns. We are inspired by the few36
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existing freeform multi-tangent structures, e.g., the temporary bamboo the-37

aters in Hong Kong (fig. 2-2) and scaffolding sculptures (fig. 2-4). However,38

to discover new functional and aesthetic potentials of multi-tangent struc-39

tures, a geometric problem will first arise: is it possible to map an arbitrary40

design intention (represented as a line graph) to a multi-tangent structure?41

Figure 2: Examples of multi-tangent bar structures: (1) rope-lashed bamboo roof struc-

tures, (2) a temporary theater in Hong Kong made with bamboos, (3) construction scaf-

folding connected by swivel couplers, (4) a sculpture made out of scaffolding elements and

couplers, by artist Ben Long.

Generalizing the multi-tangent systems to freeform structures requires a42

systematic approach to convert arbitrary design intention to conform to the43

geometric constraints of the system. The computational problem involved44

is challenging because it consists of both discrete variables, assignments to45

indicate which bars are in contact, and continuous variables, the position of46

the bar axes. A feasible multi-tangent design must satisfy constraints that47

couple the discrete and continuous variables: pairs of bars with assigned48

contact should stay tangent, while pairs of bars with unassigned contact49

must not collide.50

To address these challenges, we propose a novel mathematical formula-51

tion and a numerical solver to explore the design space of multi-tangent bar52

structures. With an arbitrary initial geometry and topology of the structure53
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given as input, our method optimizes the bar spatial positions and contact54

assignment simultaneously, while ensuring that the tangency, collision, joint55

connectivity, and bar length constraints are satisfied among bars and connec-56

tors. The generated structures can use multiple types of physical connectors,57

including metal wire ties, ropes, zip ties, and swivel couplers. For swivel58

couplers, we provide an extension on the formulation to accommodate addi-59

tional collision constraints for these bulkier but more reliable connectors. To60

test its applicability to real structures, we apply our method to design two61

human-scale pavilions made of standardized, off-the-shelf wooden bars and62

swivel couplers.63

Our core contributions include the following:64

• A mathematical optimization formulation for designing free-form, multi-65

tangent structures that use reusable, standardized bars and connectors.66

Our formulation transforms the originally intractable bi-level mixed-67

integer problem into a sequence of mixed-integer linear programming68

(MILP) subproblems that can be solved by off-the-shelf tools.69

• Modeling of practical considerations as linear constraints in the MILP70

formulation, such as bar tangency and collisions, joint connectivity,71

maximum bar length bounds, and clamp collisions.72

• An efficient numerical algorithm that adopts a trust-region-like outer73

optimization scheme with the linearized MILP as sub-steps.74

• Validation of our design algorithm on a variety of shapes in simula-75

tion, and two human-scale physical realizations of the generated multi-76

tangent designs that reuse the same kit of parts.77
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1.1. Multi-tangent structures78

Multi-tangent structure, in its most general form, is an efficient way to79

join together linear or curved elements, in which elements are jointed not80

necessarily at their ends, but at any point along their length. Computational81

design of such structures has been studied in many physical forms in the82

computer graphics literature. Examples include curved networks [25], ribbon83

structures [30, 35], wire meshes [7], welded steel sculptures [22, 26], and84

structures made of planar bent rods [23, 20].85

For multi-tangent systems with straight linear elements, structures with86

reciprocal patterns have received most attention in research. Reciprocal87

frames (RF) consist of multiple reciprocal units, in which three or more88

sloped bars form a closed circuit by having the inner end of a bar resting on89

and supported by its adjacent bars. For many centuries, RFs have been used90

in design and construction, including Leonardo Da Vinci’s bridge sketch in91

Codex Atlanticus, the roof of Nagasaki Castle in Japan, and Inuit tents [17].92

Due to their intrinsic beauty and their potential as a cost-effective deploy-93

able system [17], Pugnale et al. [29] stressed the need for computational tools94

to discover RF designs. Traditionally, designers manually experiment with95

physical mock-up models to create RF structures [28, 33], which provides full96

design control, but the making process is time consuming and disconnected97

from digital design workflows.98

Given a fixed RF-pattern, genetic algorithms has been used to offset99

the bars to achieve bar tangency [2, 27]. To enable a broader range of RF100

patterns, Song et al. [32] present a two-stage method that first generates101

the RF pattern and then perform geometric optimization to offset the bars.102
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The RF pattern is obtained by tessellating a plane with a user-specified RF103

unit, and then the pattern is mapped to the target surface. However, the104

geometric optimization models bar tangency and other design considerations105

as cost terms and uses unconstrained optimization to minimize the weighted106

sum. Because the bar tangency is not modeled as a hard constraint and107

collisions between bars are not captured, the resulting solution may have gaps108

between contact bars and collisions. In section 5.1, we will show a detailed109

comparison with this work and demonstrate that our work can enforce exact110

bar tangency and prevent collisions among bars.111

In contrast to these top-down approaches that aims to digitally finalize a112

design before the assembly starts, recent work on human-robot collaborative113

assembly proposes to enable humans to make design decisions during con-114

struction while robots temporarily support floating bars [24, 1]. However, an115

RF pattern is fixed during the process and designers can only change the bar116

positions.117

By definition, RF-patterns are only applicable to a manifold graph (a118

mesh) but little is known about the design possibilities beyond these 2.5D119

patterns. In [28], generative rules are developed to extend the RF concept120

beyond surface-based structures based on the making of physical models.121

Parascho et al. [26] propose a procedural generation logic based on tetrahe-122

dron cells to generate double-tangent structures, which means that each bar123

is tangent to two other bars at each of its ends. In contrast to these works124

that focus on specific contact patterns, our work aims to explore the geomet-125

ric possibilities of converting any given line graph (including non-manifold126

ones) to multi-tangent structures by designing an algorithm to automati-127

7



cally choose the contact patterns and bar positions while enforcing practical128

constraints.129

2. Modeling multi-tangent systems with optimization130

2.1. Overview131

Given a line graph as an input, our system allows the users to explore132

a multi-tangent realization of their design intention. The system automat-133

ically tries to compute a geometrically feasible multi-tangent configuration.134

A graphical overview of the design workflow is illustrated in fig. 3. Finding a135

feasible configuration is challenging due to the complexity of the design space:136

At each joint of the line graph, there is a combinatorial choice of the contact137

assignment, i.e., which bars are in contact with each other. Furthermore,138

the contact assignment is coupled with the bar axes’ positions, which are139

continuous variables, through the tangency, collision-free, joint connectivity,140

and bar-length constraints. A graphical illustration of these constraints is141

provided in fig. 3. These constraints have a very distinct mathematical na-142

ture, including a nested constrained quadratic optimization problem, a local143

graph connectivity problem, and a discrete assignment problem.144

In this section, we first introduce the mathematical model to describe145

a multi-tangent system, including the notation, the decision variables (sec-146

tion 2.2), and the constraints (section 2.3 - section 2.6). Then we explain the147

challenges of the general formulation (section 2.8), which motivates our new148

formulation and the solving strategy described in section 3 and section 4.149
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Figure 3: Overview of our workflow. The user provides a target line graph and a set

of available bar lengths. The optimization algorithm automatically computes the bar

axis positions and contact assignments for a multi-tangent system realization of the line

graph, while ensuring tangency, collision-free, joint connectivity, and available bar length

constraints are satisfied.

2.2. Decision variables150

Given an undirected line graph G = ⟨V,E⟩ with vertex set V and edge151

set E, we aim to find a multi-tangent realization of this graph. The graph152

vertices are embedded in the 3D Euclidean space (i.e. pv ∈ R3,∀v ∈ V ).153

In a multi-tangent system, each edge in E will be converted to a linear154

bar element, which is allowed to connect to other elements in its connected155

neighborhood in G through contact at any point on its physical surface.156
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Mathematically, we want to convert each edge ei = ⟨v, v′⟩ ∈ E in the original157

graph to a bar Li, i.e., a cylinder of revolution about the straight line segment158

x0
i → x1

i , where x0
i ,x

1
i are the endpoints of the bar axis to be determined159

(fig. 4), corresponding to v, v′ respectively.160

For each pair of connected edge ei, ej that shares a vertex v, i.e., v = ei∩ej,161

we assign a binary variable zvi,j. Let zvi,j = 1 if the bar Li has a joint connection162

with bar Lj, and zvi,j = 0 if the two bars do not have a connection (fig. 4).163

In summary, a multi-tangent system can be determined by two types of164

variables:165

• Continuous variables for bar axis’s end points x = {[x0
i ;x

1
i ]

T ∈ R6 |166

ei ∈ E}.167

• Binary variables for joint assignment z, whose entry zvi,j ∈ {0, 1}.168

Figure 4: Design variables for a multi-tangent system. For edges ei connected to the same

node v in the input graph G, we aim to determine their bar realization Li by finding the

bar end points xs
i and the joint assignment zvi,j for each pair of edges ei, ej ∈ N(v). In this

example, we assign a joint between Li and Lk by setting zvi,k = 1 (marked by the dashed

area), and no joint between Lj and Lk by setting zvj,k = 0.
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A feasible multi-tangent system must satisfy three types of constraints as169

illustrated in fig. 3: tangency (section 2.3), collision (section 2.4) and joint170

connectivity (section 2.5). In addition, an infinitely reusable multi-tangent171

system must conform to the available length constraint (section 2.6) to avoid172

cutting the part kit to fit a specific design.173

2.3. Tangent constraint174

Bar pairs with assigned joints need to be tangent, i.e., the distance be-

tween bars equals to the sum of bar radius (fig. 3-a):

d[Li, Lj] = 2R +Dc, if zi,j = 1

where R is the bar radii and Dc is the thickness of the connector used. When

the two bars are in direct contact, Dc = 0. d[·, ·] is a distance function that

computes the shortest distance between two line segments of finite lengths,

which involves the following constrained quadratic optimization:

d[Li, Lj](t
v
i,j, t

v
j,i) = min

tvi,j ,t
v
j,i

||(x0
i + tvi,j(x

1
i − x0

i ))− (x0
j + tvj,i(x

1
j − x0

j))|| (1)

s.t. tvi,j, t
v
j,i ∈ [0, 1]

where tvi,j, t
v
j,i are the unitized arc-length parameters for determining the con-175

tact point’s projection on the bar’s central axis.176

2.4. Collision constraint177

Pairs of bars without assigned joints must not collide (fig. 3-b). This

means that the distance between the bars, computed using eq. (1), should

be larger than the sum of the bar radius:

d[Li, Lj] ≥ 2R, if zi,j = 0
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2.5. Joint connectivity constraint178

For edges that are connected to the same vertex, their bar realization179

should form a connected component. An unconnected example can be seen180

at the bottom of fig. 3, where the bars form two separated components and181

therefore do not function as one structure. There are many ways to formulate182

this constraint, and we defer our particular choice of formulation for this183

constraint to section 3.4.184

2.6. Available length constraint185

We require an infinitely reusable multi-tangent system to only use bars

from a pre-defined set of available bar lengths A:

||x0
i − x1

i || ∈ A,∀ei ∈ E

In contrast to previous work on availability-driven design that constrains186

design to use elements from a limited-sized inventory [5, 12], we do not restrict187

the number of bars for each length set in A. For example, if A = {0.5, 1.0},188

a multi-tangent system can use any number of bars with length 0.5 and 1.0189

meter, but not any other length. This conforms to the industrial setting190

where structural elements are manufactured and sold in a given catalog of191

lengths, and the designer can use any number of elements from the catalog192

to build a structure assuming the supply is always larger than the demand.193

Since we do not cut the bars to fit a specific design, the chosen set of bars194

can be disassembled after serving its purpose and returned to the material195

inventory without any physical trace left on the material. Thus, the inventory196

will maintain the same length distribution and thus could be reused to build197

other structures.198
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2.7. The general optimization formulation199

Putting together all the constraints described above, we can formulate

the optimization problem for finding a reusable multi-tangent system of an

input line graph as:

Find x, z, t s.t. (2)

d[Li, Lj](t
v
i,j, t

v
j,i) = 2R +Dc, if zvi,j = 1,∀ei ∩ ej = v Tangency

d[Li, Lj](t
v
i,j, t

v
j,i) ≥ 2R, if zvi,j = 0,∀ei, ej ∈ E Bar collision

− Joint connectivity

||x0
i − x1

i || ∈ A Available lengths

x ∈ R6|E|, z ∈ {0, 1}Ncp , t ∈ [0, 1]Ncp

where Ncp =
∑
v∈V

C2
|N(v)| represents the total number of potential number of200

contact pairs and |N(v)| is the valence of each node.201

Our goal is to find a feasible solution that satisfies all the constraints. The202

first two constraints on tangency and collision involve an inner-layer, box-203

constrained quadratic optimization of eq. (1) that binds the contact point204

parameter t to the end points of the bar axis x while gated by the joint205

assignment z. The available length constraint is a discrete catalog constraint.206

All of these together make the optimization problem a bilevel, mixed-integer207

programming problem with combinatorial constraints that is challenging to208

solve. In the next section, we use some concrete examples to provide some209

further insight into the challenges of solving this problem, and how this is a210

significant departure from previous work on computational design of multi-211

tangent systems.212
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2.8. Challenges213

To illustrate the challenging coupling between the geometric and contact214

assignment variables and the design complexity therein, fig. 5 provides some215

design solutions for star-shaped input graphs, which represent the simplest216

topological example of connecting multiple edges at a single graph node.217

For planar star-shaped graphs like the ones fig. 5-a and b, heuristics218

based on reciprocity can be used to assign the contact between bars, and219

optimization can focus on the geometric realization of the bars. However, we220

show that the reciprocal pattern, widely used in practice [18] and explored221

in research [32], is only a small part of the design space. The second row222

under fig. 5-a and b shows two designs with more joints used than a typical223

reciprocal pattern, and they demonstrate new potentials for more structural224

rigidity and different aesthetic expressions using tectonics.225

For nonplanar star-shaped graphs such as the one in fig. 5-c, the contact226

assignment is not trivial and has a significant impact on finding a feasible227

bar configuration. For example, under fig. 5-c, we show two designs with228

different contact assignments that use 8 and 12 joints, respectively. These229

very distinct solutions show the nontriviality of defining rules for finding a230

solution for a spatial graph that satisfies all the constraints mentioned in the231

previous section. Such complexity also explains why most of the previous232

work on multi-tangent systems focuses on 2.5D reciprocal structures that233

resemble a surface [32, 22], and the few that consider spatial networks follow234

specific aggregation-based generation rules [26].235

Finally, given all the design possibilities displayed in fig. 5, these star-236

shaped graphs represent only a small neighborhood in an input graph that237
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is commonly used in practice. In those cases, resolving the constraints in238

a global fashion is much more challenging. Thus, a systematic approach239

is needed to overcome the technical challenges mentioned above and allow240

users to explore the design space of multi-tangent systems for arbitrary in-241

put graphs. This goal motivates our new formulation and solving strategy242

described in the next two sections.243

Figure 5: Multi-tangent design solutions for a valence-4 planar graph (a), a valence-5

planar graph (b), and a valence-8 spatial graph (c). Different contact assignments lead to

drastically different bar configurations, which demonstrates the complexity of the multi-

tangent design space.
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3. New formulation: domain linearization for infinitely long bar244

elements245

In this section, we describe modeling tricks to make the general optimiza-246

tion formulation described in section 2.7 tractable. The key insights are:247

• Instead of finite bar elements, we model each bar as an infinitely long248

cylinder to simplify the distance computation in eq. (1). This turns the249

bi-level optimization problem into a single-level optimization problem.250

This also means that the length of the bars can be trimmed according251

to the available length set A after the optimization, and the available-252

length constraint can be removed from the optimization. (section 3.1)253

• We use the first-order linearization of the tangency and collision con-254

straints, and change the geometric variables from absolute positions255

x,n to relative delta position changes dx, dn. This turns distance-256

related constraints from quadratic to linear. (section 3.2)257

• New binary variables are introduced to model the top and down posi-258

tion between two bars in the tangent and collision constraints, which259

act like binary switches to help the optimization navigate disconnected260

feasible regions. (section 3.3)261

• The joint connectivity constraint is modelled as a graph flow problem,262

which forms a set of linear constraints. (section 3.4)263

• Connector locations on the same bar are constrained to ensure that bar264

length is smaller than the maximum available length. (section 3.5)265
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• A scalar variable is introduced to gradually inflate the bar radius to-266

wards the target radius R, which provides a curriculum with increasing267

difficulty and helps the convergence of the overall optimization prob-268

lem. (section 3.6)269

In addition, we provide an extension to model collision constraints be-270

tween swivel couplers in section 3.7.271

3.1. Modeling of infinitely long bar elements272

The main challenges of the original formulation in section 2.7 are two-273

fold: (1) the bilevel nature of the problem caused by the distance computation274

embedded in the tangency and collision constraints, and (2) the combinatorial275

nature of the available length constraint. To overcome these challenges, we276

propose a conservative modeling trick to simplify the problem by modeling277

each bar as if they have infinite length in the optimization, and then trim the278

bar length as a post-processing step. This modeling is conservative because279

we ensure that collision is avoided for bars with infinite length, which is more280

restrictive than the actual case where the bars are finite.281

Mathematically, the central axis of an infinite-length bar can be repre-

sented by a point xi on the line and a vector ni. When not in parallel, the

distance between two such bars can be simplified as an analytical expression:

d∞[Li, Lj] = (ni/∥ni∥ × nj/∥nj∥)T (xi − xj) (3)

Compared to eq. (1) where we have to use a constrained quadratic op-282

timization to compute an unsigned distance between two finite-length line283

segments, this closed-form expression can be computed directly. Unlike the284
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unsigned distance in eq. (1), this is a signed distance depending on the rela-285

tive position of the two bars (fig. 6). When the two bars are close parallel,286

eq. (3) degenerates, and we provide the numerical treatment for this special287

case in Appendix A.288

Figure 6: The distance computation for two infinitely long bars, each of which is modeled

by a point x and a normal vector n. The distance is signed and depends on the relative

position of the two bars. After linearization, we solve for the change variables dx, dn,

instead of the absolute position variables x,n.

3.2. Delta design variables and linearized distance computation289

Despite its simplicity, the distance computation in eq. (3) is still nonlin-290

ear with respect to x and n and thus still leads to a nonconvex optimization291

problem that is hard to solve. So we make another important decision for292

modeling: instead of solving the mixed integer nonlinear optimization prob-293

lem with the absolute position and normal variables x,n in one shot as in294

eq. (2), we linearize the distance computation and iteratively solve for the295

change variables dx, dn as a mixed-integer linear programming problem.296
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The rationale behind this is similar to the well-known trust-region method297

in nonlinear optimization ([9]-chap 11.6): for a given design x,n, we perturb298

the design with a small change dx, dn in a trust region of size ∆ and solve299

for the new design x + dx,n + dn with a linearly approximated model, and300

then accept the new design if it improves the objective function. This process301

is repeated with a dynamically adjusted trust region until convergence. We302

delay the detailed description of the solving technique to section 4.303

Formally, we switch from using the absolute variables {[x0
i ;x

1
i ]

T ∈ R6 |

ei ∈ E} to the change variable {[dxi; dni]
T ∈ R6 | ei ∈ E} (fig. 6). We

constrain the change variables to be within a small trust region ∆, and

ensure that after the perturbation, the normal vector remains unit length:

−∆k ≤ dxi, dni ≤ ∆k,∀ei ∈ E (4)

nk
i · dni = 0,∀ei ∈ E (5)

where the trust region size ∆k will be adjusted dynamically during the opti-304

mization process. nk
i is the normal vector of the bar Li computed from the305

previous optimization iteration, which is fixed during the current iteration.306

The first-order Taylor approximation d̂∞ of the distance function in eq. (3)

is:

d̂∞[Li, Lj](dxi, dni, dxj, dni) :=

d∞(xi,ni,xi,nj) +
∂d∞
∂xi

T

dx0
i +

∂d∞
∂ni

T

dni +
∂d∞
∂xj

T

dxj +
∂d∞
∂nj

T

dnj (6)

With x,n fixed, this distance formula is linear with respect to the change307

variables dx, dn. When Li and Lj are close to parallel, special treatments308

are needed to avoid numerical instability, which is provided in Appendix A.309
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3.3. Linearized tangent and collision constraints with side switches310

Since we are using the signed distance, the original tangency and collision

constraints for the unsigned distance in eq. (2) turn into absolute constraints:

|d∞[Li, Lj]| = 2R +Dc, if zi,j = 1

|d∞[Li, Lj]| ≥ 2R, if zi,j = 0

To upper bound the absolute value of the distance between two bars Li, Lj

when they are tangent, we use the following linearized constraints:

d̂∞[Li, Lj] ≤ 2R +Dc +M(1− zvi,j) (7)

d̂∞[Li, Lj] ≥ −(2R +Dc)−M(1− zvi,j) (8)

where M is a large positive constant to only activate the constraint when311

zvi,j = 1, and d̂∞[Li, Lj] is the linearized distance function in eq. (6). Dc is312

the thickness of the connector.313

To lower bound the absolute value of the distance, since |d̂∞| ≥ 2R+Dc

specifies two disconnected feasible regions depending on the sign of d̂∞:

d̂∞ ≥ 2R +Dc if d̂∞ > 0

d̂∞ ≤ −(2R +Dc) if d̂∞ < 0

we introduce a new binary variable svi,j to activate only one of the equations.

Intuitively, svi,j models the up-down side of the bar Li with respect to Lj

(fig. 6), and helps the optimization algorithm to "jump" to the other feasible

region when staying on one side is infeasible. Thus, we have the following

linearized constraints for lower bounding the distance when the bars are
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tangent:

d̂∞[Li, Lj] ≥ 2R +Dc −M(1− svi,j) (9)

d̂∞[Li, Lj] ≤ −(2R +Dc) +Msvi,j (10)

Note that the constraints d̂∞ ≥ 2R+Dc are only activated when s = 1, and314

the constraints d̂∞ ≤ −2R−Dc are only activated when s = 0.315

Similarly, we can model the collision constraints as follows:

d̂∞[Li, Lj] ≥ 2R−Mzvi,j −M(1− svi,j) (11)

d̂∞[Li, Lj] ≤ −2R +Mzvi,j +Msvi,j (12)

Here, the constraints d̂∞ ≥ 2R are only activated when z = 0 and s = 1, and316

the constraints d̂∞ ≤ −2R are only activated when z = 0 and s = 0.317

3.4. Modeling joint connectivity as a commodity flow problem318

To ensure bars that are connected to the same vertex in the input graph319

still form a connected component in its multi-tangent realization, we want320

to ensure that there exists a path connecting each pair of vertices in the321

connectivity graph. This is equivalent to finding a connected subgraph in322

the local connectivity graph at the joint v.323

We introduce a joint connectivity graph J(v), a fully connected graph324

with its vertex set VJ(v) = {Li | ei ∈ N(v)} corresponding to each bar con-325

nected to v, and its edge set EJ(v) = {(Li, Lj) | ei, ej ∈ N(v), i ̸= j} corre-326

sponding to all potential joint assignments (fig. 7-1). N(v) ⊂ E denotes all327

the edges connected to v in the original linegraph G. |VJ(v)| is equal to the328

valence of v in G. Then, we can use the joint assignment variables zvi,j as the329
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Figure 7: Joint connectivity graph representation. (1) The joint connectivity graph at a

joint v with its vertices corresponding to each bar connected to v and edges corresponding

to the joint assignments. (2) The joint assignment variables zvi,j can be used as the

indicator function to identify a subgraph. An example connected subgraph is shown with

bold edges.

indicator function to identify a subgraph, where the edge is in the subgraph330

if and only if zvi,j = 1 (fig. 7-2).331

Modeling graph connectivity appears in abundance in the literature on332

computational political districting [34]. In this work, we choose a simple vari-333

ant that models it as a commodity flow problem [31], which can be expressed334

as a set of linear constraints:335

0 ≤ yvi,j ≤ (|VJ(v)| − 1)zvi,j,∀(i, j) ∈ EJ(v) (13)∑
j∈VJ(v)

yvs,j = |VJ(v)| − 1 (14)

∑
j:(i,j)∈EJ(v)

yvi,j =
∑

j:(i,j)∈EJ(v)

yvj,i − 1,∀i ∈ VJ(v) \ {s} (15)

yvi,j = yvj,i (16)

where yvi,j is the real-valued flow variable that indicates the commodity336
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flow from Li to Lj in the joint connectivity graph (fig. 8-1). Assuming that337

the graph is undirected, we assume that if (i, j) is an edge with flow variable338

yvi,j, (j, i) represents the same edge and yvj,i also exists and is constrained to339

be equal.340

The goal of these constraints is to ensure that there exists a feasible flow341

from an arbitrarily chosen source vertex Ls ∈ VJ(v) that has a supply of342

|VJ(v)| − 1 unit of commodity to all other vertices, where each vertex has343

demand 1. An example of such flow is depicted in fig. 8-2. Equation (13) en-344

sures that the flow is only allowed on the edges of the selected subgraph where345

the joint assignment is active (zvi,j = 1). Equation (14) states |VJ(v)|−1 units346

of commodity are supplied from the chosen source vertex Ls. Equation (15)347

says that at every vertex, one unit of supply gets absorbed and anything left348

is passed along. Since we introduce a new flow variable yvi,j for each edge349

in the fully connected joint connectivity graph around v, |VJ(v)| (|VJ(v)| − 1)350

number of new variables will be introduced. Because the subgraph-gated351

flow constraint (eq. (13)) is assigned for each yvi,j, and the flow conservation352

constraint (eq. (14)) is assigned for each vertex v ∈ VJ(v), the number of353

variables and constraints introduced are both quadratic to the valence of v354

in the original graph. We add this set of constraints for each vertex v ∈ G,355

so the total amount of constraints introduced is at the scale of |V | |N(v)|2.356

3.5. Maximum length of bar constraint357

The maximum length of bar constraint ensures that the clamps on the358

same bar that are farthest apart do not exceed the longest element in the359

provided inventory, so that the post-processing step in section 4.2 can trim360

the infinitely long bar to the available length.361
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Figure 8: Commodity flow representation to model subgraph connectivity. (1) illustration

of the directed flow variable yvi,j on the undirected joint connectivity graph. (2) an example

flow that connects the source vertex Ls to all other vertices.

To compute the distance between a pair of clamps on a bar, we will

need to compute the arc-length parameter ti,j. This parameter expresses the

distance from the bar end point xi of bar Li to the its connector with Lj,

which can be computed by:

Ti,j = [ti,j, tj,i]
T =argmin ||(xi + ti,jni)− (xj + tj,inj)||2

where ti,j, tj,i express the same connector’s arc-length parameters on bar Li

and Lj, respectively. We only consider non-parallel pairs of Li and Lj here,

since in the parallel case we are free to choose t. Since this is an uncon-

strained, quadratic optimization problem, the optimum can be found by

setting the gradient with respect to t to zero:

Ti,j(xi,ni,xj,nj) =

 nT
i ni −nT

i nj

−nT
i nj nT

j nj

−1 (xj − xi)
Tni

(xi − xj)
Tnj

 (17)

Recall that our decision variables are the change variables dx, dn and the

unknown arc-length parameters Ti,j. We use a first-order approximation to
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link them with T̂i,j computed by using x̂, n̂ from the previous trust region

iteration, by ignoring the higher-order terms in the Taylor expansion of Ti,j:

Ti,j − T̂i,j(x̂i, n̂i, x̂j, n̂j)−
∂Ti,j

∂xi

T

dxi −
∂Ti,j

∂ni

T

dni −
∂Ti,j

∂xj

T

dxj −
∂Ti,j

∂nj

T

dnj = 0

(18)

where all the partial derivatives are evaluated at x̂, n̂.362

Finally, the maximum length of bar constraint can be formulated by en-

suring that the arc-length parameters of the clamps on the same bar are

smaller than the maximum available length lmax:

Ti,j − Ti,k ≤ lmax +M(1− zi,j) +M(1− zi,k) (19)

Ti,k − Ti,j ≤ lmax +M(1− zi,j) +M(1− zi,k) (20)

∀ei ∩ ej = v, ei ∩ ek = v′

3.6. The linearized optimization formulation with radius curriculmn363

Although directly solving the feasibility problem with all the linearized364

constraints described above should work in theory, in practice, we found that365

the optimization struggles to turn the initial guess into a feasible solution.366

To overcome this challenge, we introduce a strategy inspired by curriculum367

learning to gradually inflate the radius of the bar toward the target radius368

R. We introduce a new scalar variable r, and replace the radius R in the369

tangency and collision constraints with r. Intuitively, when the radius of the370

bar is small, the tangency and collision constraints are easier to satisfy, and371

the optimization can gradually increase the radius to the target value (fig. 9).372

Then, we can formulate the objective of the MILP to maximize the radius
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Figure 9: Illustration of inflating radius with a fixed trust region size and contact assign-

ment.

r with a bound on the target radius R:

max
dx,dn,z,t,y,r

r (21)

s.t. eq. (4) − eq. (5) Delta variable feasibility

eq. (7) − eq. (10) Tangency with r

eq. (11) − eq. (12) Bar collision with r

eq. (13) − eq. (16) Joint connectivity

eq. (18) − eq. (20) Max bar length

r ≤ R Radius constraint

dx, dn ∈ R6|E|, z ∈ {0, 1}Ncp , t ∈ [0, 1]Ncp , y ∈ R2Ncp
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where, as in eq. (2), Ncp represents the total number of potential number of373

contact pairs. The complete formulation is provided in Appendix B.374

Before describing the solving technique in section 4, we provide an ex-375

tension to model collision constraints between external connectors like the376

swivel coupler in section 3.7.377

3.7. Extension: Account for clamps378

When external connectors are used to connect bars, additional constraints379

need to be introduced to prevent collisions between the connectors. This will380

happen when the location of two connectors is too close on the same bar381

(fig. 10).382

Formally, for each pair of clamps (i, j) and (i, k) on the same bar Li, we

constrain their distance to be larger than a threshold dcc:

Ti,j − Ti,k ≥ dcc −M(1− zvi,j)−M(1− zvi,k)−Muv
i,j,k (22)

Ti,k − Ti,j ≥ dcc −M(1− zvi,j)−M(1− zvi,k)−Muv
i,j,k (23)

where Ti,j is computed as in eq. (17), and uv
i,j,k is a new sign variable that383

help the optimization to switch between left and right positions of the clamps,384

similar to the side switch variables in section 3.3. The number of additional385

constraints and variable added is linear in the number of bars.386

In practice, we find that the tangency constraint involving the bar radius387

r often compete against the satisfaction of the collision constraints. To make388

sure that the radius and collision constraints’ satisfaction are approached in389

the same rate, we swap the dcc in eq. (22) with a scalar collision variable c,390

and add a constraints c/dcc = r/R to the optimization. In fig. 10, we show391
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that these constraints make the optimizer adjust the design globally to avoid392

the collision, where a local perturbation is not enough.393

Figure 10: Clamp collision constraint. (1) two clamps on the same bar Li are in collision

because their locations on the bar are two close. (2) a collision-free solution is obtained

with the introduction of the clamp collision constraint. Note that the optimizer needs to

adjust the design globally to avoid the collision, and a local perturbation is not enough.

4. Solving techniques394

In eq. (21), we describe a mixed integer linear programming problem as395

a sub-iteration in a trust-region-like optimization scheme. In this section, we396

first describe the overall solving strategy in section 4.1, and then describe397

the post-processing step to assign the bar length according to the available398

length set A in section 4.2, which we also formulate as a separate MILP399

problem.400

4.1. Core algorithm: Sequential MILP401

The algorithm starts with an initial trust region size ∆k, and iteratively402

solves the MILP problem in eq. (21) with the current trust region size. When403

the MILP sub-problem fails to converge, ∆k is enlarged to further explore404
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the design space. Otherwise, ∆k is halved to increase the accuracy of the405

linear approximation and refine the solution. The algorithm converges when406

the trust region size reaches the lower bound ltr or fails when it reaches the407

upper bound utr.408

Figure 11 shows the convergence behavior of the algorithm on a 5-bar star-409

shaped example. At the beginning, when the trust region size is large, the410

first-order approximation used in the MILP does not accurately represent411

the real contraints.Thus, although the MILP converges and all of its con-412

straints are satisfied, we can see the design still violates the actual tangency413

and collision constraints, marked by the red regions in Figure 11. However,414

the algorithm changes design dramatically to explore different parts of the415

solutions pace. As the trust region gets smaller, the linearization becomes416

more accurate, and the optimizer gradually fine-tunes the design to arrive at417

a feasible solution.418

4.2. Post-processing: bar length adjustment according to available bar stock419

The final step is to trim the infinitely long cylinders x,n computed from420

the last section according to the available bar stock. The goal here is to assign421

a bar length in the stock to each bar, such that the length is long enough422

to cover the longest pair of clamps on the same bar, while minimizing extra,423

unused length. While simply assigning the closest stock bar length that is424

larger than the furthest pair of clamps provides a feasible solution, we solve425

the following MILP problem for each bar Le to minimize the distance between426

assigned bar’s end points to the furthest pair of clamps:427
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Algorithm 1 Sequential Mixed-Integer Linear Programming
1: procedure SMILP(V,E; ltr, utr, ϵ)

2: ∆k = inittr ▷ Initialize trust region size

3: while ltr ≤ ∆k ≤ utr do

4: xk,nk, z, r, c, converged = MILP(V,E,xk−1,nk−1,∆k) ▷ eq. (21)

5: if converged then

6: if r >= (1− ϵ)dbt and c >= (1− ϵ)dcc then

7: ∆k / = 2 ▷ a solution found under ∆k, shrink trust region

8: if Exceeds max iterations for the same trust region value then

9: ∆k ∗ = 2 ▷ current ∆k timeout, enlarge trust region

10: else

11: ∆k ∗ = 2 ▷ not converged, enlarge trust region

12: if ∆k ≥ utr then ▷ trust region size reaches upper bound

13: return Failed

14: else

15: J = [ ] ▷ solution found, extract joint assignment

16: for zvi,j ∈ z do

17: if zvi,j = 1 then

18: J.append(⟨ei, ej⟩)

19: return x,v, J ▷ Return bar starting point, bar direction, and joint

assignment

min
te0,t

e
1

(te0 − tec0)
2 + (t1 − tec1)

2 (24)

s.t.

|A|∑
i=1

si = 1 (25)

|A|∑
i=1

sili = te0 − te1 (26)

te0 ≤ tec0, t
e
1 ≥ tec1 (27)

si ∈ {0, 1}, i = 1, · · · , |A| (28)
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Figure 11: Sequential MILP with shrinking trust region ∆k. The optimization starts with

a large trust region size and explore the design space with certain constraints violated.

After a few iterations, the inner MILP problem converges and the trust region gets smaller,

and the optimizer fine-tunes the design to a feasible solution.

where tec0, t
e
c1 are the arc-length parameters of the furthest pair of clamps on428

the bar Le, which can be computed from x,n and joint assignment z in the429

previous step. te0, t
e
1 are the arc-length parameters of the assigned bar’s end430

points, and si is the binary variable indicating the selected bar length li in431

the stock. Equation (25) ensures that only one bar length is selected, and432

Equation (26) ensures that the assigned bar length covers the furthest pair433

of clamps.434
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5. Results435

We implement the proposed algorithm in Python. We use Gurobi 9 [10]436

to solve the MILP subproblems and the automatic differentiation of JAX437

[3] to obtain the gradient expressions in eq. (6) and eq. (18). The code is438

open-source online1. All experiments were performed on a consumer-grade439

laptop without parallelization and GPU acceleration. We demonstrate our440

algorithm in two simulated and two real-world case studies. In section 5.1,441

we show that our work can overcome existing method’s limitations on enforc-442

ing tangency and collisions, and our method can be configured to reproduce443

traditional reciprocal patterns as well as automatically assigned new contact444

patterns. In section 5.2, we show that, given the same input line graph, our445

method can generate structures that respond to different available bar stock.446

In section 5.3, a simulated benchmark study is presented to evaluate the algo-447

rithm’s performance on various geometries and topologies. In section 5.4, two448

real-scale case studies are conducted to demonstrate the physical feasibility449

of the computed structures and the concept of reusability.450

5.1. Comparison with previous work on reciprocal structures451

As mentioned in section 1.1, previous work on generating multi-tangent

structures has two limitations: (1) the contact patterns are limited to surface-

based graph inputs and are assumed to be fixed during the bar position

optimization phase, and (2) collisions between bars are not modeled. To

demonstrate that our work overcomes these limitations, we compare our work

with the geometric optimization formulation for reciprocal structures [32],

1https://github.com/KIKI007/Scaffold
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which is formulated as follows:

min
t,x

w1E1(x) + w2E2(t)+

w3

∑
(Li,Lj)∈C

∥(x0
i + ti,j(x

1
i − x0

i ))− (x0
j + tj,i(x

1
j − x0

j))− 2Rni,j∥22

(29)

s.t. (x1
k − x0

k) · ni,j = 0, k ∈ {i, j},∀(Li, Lj) ∈ C

where the first objective term E1 minimizes deviation of x from the node452

positions in the input line graph and the second term E2 uses a quadratic453

soft barrier to bound t within [0, 1]. The third objective term minimizes454

the deviation between the difference vector of the two contact points and455

the target contact normal. Note that the direction of the target normal ni,j456

(forward or reverse) will dictate the top/down positions of the two bars. In457

[32], this is decided a priori based on the reciprocal contact pattern and458

remains fixed during the optimization. In our work, we introduce binary size459

switching variables to give the optimization the flexibility to choose them460

automatically (see section 3.3).461

In our experiment, we choose a 2-by-2 box array as the test example462

(fig. 12). We set the thickness of the connector Dc to zero to simulate contexts463

when rope joints [24] or welding [26] are used to connect pairs of tangent464

bars. We use the contact assignment C computed by our method since the465

target line graph is a non-manifold one and does not admit a reciprocal466

pattern. We optimize eq. (29) using the Newton-CG method with analytic467

gradient and Hessian and a weight of w = [1, 1, 200]. The optimization468

converged successfully in 19 Newton iterations. In contrast to our work469

where collision constraints among bars are strictly enforced (fig. 12-2), the470
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result from eq. (29) contains multiple collisions (fig. 12-1). To check the471

accuracy of the bar tangency, we plot the shortest distances between each472

pair of contact bars in fig. 13 and observe that our method can achieve exact473

tangency with an ignorable numerical error and the result from eq. (29) has474

larger deviations from the target contact distance.475

Figure 12: (1) The geometric optimization from previous work [32] can lead to a result

with multiple bar collisions. (2) Our method can ensure that the result is collision-free.

The two results are using the same contact pattern computed by our method.

Our work can not only automatically generate new contact patterns for476

shapes that do not admit existing patterns, but can also be configured to use477

a given pattern. In fig. 14-1, we show our method can reproduce the well-478

known reciprocal structure by constraining the contact assignment variables479

zvi,j to follow the reciprocal pattern, As a comparison, we can relax the pattern480

constraints and let the algorithm choose the contact assignment freely, and481

we get a structure using the same set of bars but with a different contact482

pattern (fig. 14-2).483
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target contact distance

Contact pair index (Li, Lj)

Song et al. 2013
Ours

Figure 13: The shortest distance plot between each pair of contact bars’ central axes for

the results in fig. 12. Two bars are tangent when their shortest distance is 0.02 meter (sum

of their radius).

Figure 14: Reciprocal contact pattern and auto-generated contact pattern. Our algorithm

can be configured to perform only geometric optimization on the bars to obtain a feasible

design following a prescribed contact assignment. (1) a dome structure with a reciprocal

contact pattern. (2) the same dome input with an auto-generated contact pattern, using

the same set of bars.
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5.2. Design responding to available materials484

An important advantage of our algorithm is its ability to automatically485

adapt the design according to the available bar stock. In fig. 15, three differ-486

ent multi-tangent configurations are generated for the same input line graph,487

but with different available bar lengths. The bar-length distribution on the488

second row shows that the algorithm is capable of regulating the length dis-489

tribution to fit the given length types. We also observe that with more bar490

length available, the final structures are more faithful to the input line graph.491

Figure 15: Computed multi-tangent structures responding to different available bar stocks.

The algorithm shows the ability to change the design globally to fit different bar length

types. Bars are colored according to their length displayed in the bar length distribution.

5.3. Scalability analysis492

We tested our method on a benchmark of 10 models with varying num-493

bers of elements and topologies, some of which are adapted from [36]. The494

generated multi-tangent structures are visualized in fig. 16, together with495
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the total runtime. Detailed statistics of the models and the optimization are496

provided in table 1.497

From fig. 16, we can observe that the runtime grows exponentially to the498

number of elements. However, in some cases, a model might have smaller499

number of elements but longer runtime (see bridge and roboarch in table 1).500

This is because bridge has many high-valence nodes and thus the size of the501

MILP will increase due to the additional variables and constraints introduced502

by the extra potential contact pairs.503

In fig. 17, we show the evolution of the trust region size and the runtime504

for each MILP subproblem for the box 2 × 2 and cshape models. We can505

observe that the MILP typically runs longer at the beginning of the optimiza-506

tion when the trust region is large and it spends more time to explore until it507

finds a feasible solution. But as the optimizer gets into a feasible region, its508

runtime decreases quickly since it is fine tuning an almost feasible solution509

by shrinking the trust region size for a more accurate linearized model. In510

the case of box 2× 2, we can also see that the trust region size plateaus be-511

tween 7- to 13-th iterations. This is because the MILP solver converges but512

the resulting radius objective r∗ is not close to the target radius R. Thus, it513

keeps optimizing for a few more iterations until the r∗ is close to R and then514

progresses to a smaller trust region size. In step 14, the trust region size is515

briefly relaxed due to a failure of MILP convergence and back on track again516

when the subsequent iteration finds a feasible solution.517

While our method can solve moderately sized problem in a reasonable518

time budget, it shows limitation when the model has too many elements and519

a large node valence distribution. In box 4× 4 (last row of table 1), we add520
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one more layer of boxes in x,y,z direction to box 3 × 3. The optimizer only521

succeeded in solving the first MILP iteration with the initial trust region522

value, but unable to converge until timeout for the next four iterations.523

Figure 16: The runtime of our method on the benchmark models.
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Figure 17: The evolution of the trust region size ∆k and the MILP runtime over the course

of the trust region iterations in the optimization process.
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Table 1: Detailed model and optimization statistics of the benchmark. The second to fifth

columns indicate: number of elements; the average/standard deviation of node valence;

number of continuous, discrete variables and constraints in the MILP; number of trust

region (t.r.) iterations. The starting t.r. size inittr, the t.r. lower bound ltr, upper bound

utr, and convergence tolerance ϵ are set to be 10−1, 10−6, 1.0, 10−2 respectively across all

experiments. We set a timeout of 1000 seconds for the each MILP iteration.

Model #elems
Valence

avg/std

#cont. vars

#disc. vars

#constraints

T.r.

iters
Runtime (s)

box 1× 1 12 3.00/0.00 170, 72, 668 25 0.30

tower 24 4.8/1.8 578, 654, 4449 17 3.51

bridge 39 5.2/1.6 964, 1108, 7746 23 10.65

roboarch 45 2.5/0.9 596, 242, 2272 17 0.53

box 2× 2 54 4.0/0.8 1007, 656, 5557 25 44.14

frustum 68 4.3/0.8 1335, 1006, 7901 18 35.06

bunny 129 3.9/1.6 2607, 2212, 16511 17 86.57

box 3× 3 144 4.5/0.9 2971, 2177, 18267 31 272.09

cshape 192 5.2/1.5 4670, 4812, 35335 18 1969.90

box 4× 4 300 4.8/0.8 6440, 4930, 40660 5
4001.67

(timeout)

5.4. Real-world case studies524

To demonstrate the design flexibility and the reuse concept of our ap-525

proach, we present two real-scale built case studies. In this section, we526

describe two design strategies for the input line graph (section 5.4.1), fast527

assembly method using Augmented Reality (AR) (section 5.4.2), the analysis528
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of the assembly results (section 5.4.4), and the potential to reconfigure the529

structure (section 5.4.3). This section is adapted from our previous confer-530

ence publication [15].531

5.4.1. Input line graph design strategies532

The first design strategy uses a "bottom-up" approach, where the line533

graph is procedurally aggregated from the same type of modules (fig. 18-1).534

Each module contains two juxtaposed triangular prisms, which is kinemat-535

ically stable. By aggregating these modules, we can create three arches of536

different heights, and by connecting these arches with a top chord and a537

central column, we obtain a doubly curved line graph structure (fig. 18-2-3).538

While the results in section 5.1 and section 5.2 are computed by directly539

inputting the line graphs into the algorithm, this design consists of 430 bars540

and the optimization is too complex to be solved in one shot. Thus, we541

use a procedural computation strategy by dividing the line graph in groups542

and solve for each subgroup incrementally. We use the decomposition shown543

in fig. 20-1, which is also used for the modularized prefabrication discussed544

in the next section. When computing for a new subgroup, the previously545

computed groups are fixed. Using this strategy, a feasible multi-tangent546

structure can be generated that uses only one-meter-long bars (fig. 18-4).547

This particular design instance, named Archolumn, consists of 430 bars and548

750 couplers, with a dimension of 5.45 m x 6.35 m x 3.4 m (width x length549

x height).550

The second design strategy uses a "top-down" approach, where the line551

graph is first designed as a dome structure, and then it is subdivided into a552

line graph. 3D graphic statics [19, 21] is used to generate a compression-only553
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Figure 18: "Bottom-up" design of the line graph. (1) structurally stable modules can be

aggregated to form an arch. (2) overall design sketch: three arches and a central column to

form a doubly-curved structure. (3) following the design sketch, final line graph is created

by connecting three arches and a central column, all aggregated from modules that share

the same topology, but morphed geometrically. (4) the optimization algorithms takes the

line graph and generates the design Archolumn that only uses one-meter-long bars and

swivel couplers.

grid shell structure, starting from a volumetric boundary fig. 19-(1) and then554

converted into a dome-shaped skeleton fig. 19-(2-3). The Grasshopper Plugin555

"3D Graphic Statics" [8] is used in this form finding process, which takes the556

bounding volume, the location of the support, and the load conditions as557

input and generates a funicular structure accordingly. To avoid using overly558

long bars, the dome is further subdivided into tetrahedrons while maintaining559

structural stability (fig. 19-(4)). Tetrahedrons also help stabilize the struc-560

ture during the assembly process. Using the same procedural computation561

strategy discussed above with the decomposition in fig. 20-2, we get a final562

design instance, named Bloomdome, which uses 210 one-meter-long bars and563

445 couplers, with a dimension of 6.5 m x 5.6 m x 2.8 m (fig. 19-(5)).564
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Figure 19: Top-down design of the line graph. (1) volumetric boundary of the dome. (2-3)

dome-like skeleton generated by 3D graphic statics. (4) subdivided dome into tetrahedrons

to avoid overly long bars. (5) the final, optimized multi-tangent design, called Bloomdome,

which uses only one-meter-long bars and swivel couplers.

5.4.2. Augmented Reality-assisted assembly strategies565

Building multi-tangent structures with the traditional, manual assembly566

method comes with formidable complexity, as each bar has its unique spatial567

position and connectivity with other bars. To simplify the assembly process,568

we propose two strategies: (1) prefabricating modules and (2) using Aug-569

mented Reality (AR) to guide the assembly process. We first decompose the570

structure into modules, grouped with colors in fig. 20, based on an engineer-571

ing judgment that considers structural stability and ease of assembly. We572

use Microsoft Hololens 2 [11] and the Fologram app [6] for AR visualization.573

AR is first used in the prefabrication stage, where workers can see pro-574

jected spatial positions of the bars and couplers (fig. 21-1-2). Extra anchors575

and bars are used to temporarily reinforce the modules during assembly576

(white bars in fig. 21-1), preventing the modules from collapsing or shift-577

ing. Two completed modules are shown in fig. 21-3.578

The prefabricated modules are then transported on site for combination,579
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Figure 20: The structures are decomposed into modules manually for prefabrication and

onsite assembly. Modules are colored differently for illustration.

Figure 21: AR-assisted prefabrication of modules. (1-2) Workers are equipped with

Hololens to see the spatial positions of the bars and couplers. The white bars are used for

temporary reinforcement and support. (3) Two completed modules.

where AR is again used to provide guidance on the spatial location and580

connectivity among the modules (fig. 22-1). After completion, the extra bars581

used for reinforcement are removed (fig. 22-2).582

5.4.3. Potential for reconfiguration583

As an extension of our system, the multi-tangent structures can change584

its function and appearance by re-distributing the bars. In fig. 23, we show585

a reconfiguration of the Archolumn structure, where the central column is586

designed to be removable to create more open space inside the structure587

(fig. 23). To compensate for the support provided by the column, 65 bars588
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Figure 22: AR-assisted onsite assembly. (1) modules are transported on-site and assembled

with AR guidance for accurate placement and connectivity. (2) after completion, the extra

bars used for reinforcement (white bars) are removed.

of the column are disassembled and relocated to the top chord to reinforce589

the arch (blue bars in fig. 23-2), with the remaining 49 bars recycled into the590

stock. This experiment demonstrates the potential of our system to adapt to591

different requirements by reconfiguring the structure with minimal material592

waste and rework.593

5.4.4. Analysis of the assembly results594

Detailed statistics on the equipment, materials, and assembly time of the595

two case studies are summarized in table 2. Our data show that both pavil-596

ions can be erected within one day of prefabrication and six hours of assembly597

on site. Both pavilions are built using the same set of bars and couplers. The598

first pavilion Archolumn is assembled first and then disassembled to build the599

second pavilion Bloomdome. This shows that freefrom temporary structures600

can be built quickly and without waste using our method.601

Both structures achieve expected structural stability. As a qualitative602

analysis of the final assembly results, we use a point-cloud scan (fig. 24-1)603

44



Table 2: Detailed statistics of the assembly results, including labor, requipment, materials,

and assembly time.

Archolumn

(without reconfiguration)

Archolumn

(reconfigured)
Bloomdome

Workers

Equipment

2 person

2 Hololens

2 person

2 Hololens

1 person

1 Hololens

Bars 430 381 210

Couplers 750 670 445

Dimension

(WxLxH)

5.5m

6.2m

3.4m

same

as left

6.5m

5.6m

2.8m

Module

assembly time

10 modules

24 hrs
N/A

7 modules

18 hrs

On-site

assembly time
6 hrs 5 hrs 3 hrs
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Figure 23: Archolumn is designed for two scenarios: with (1) and without the central

column (3). Transformation is achieved by removing the central column (pink) and redis-

tributing the bars to reinforce the arch (blue). While the structure before configuration

shows a more enclosed, intimate space (1), the reconfigured structure provides a more

open, spacious interior space that invites more daylight to come in (4).

and an AR-overlay (fig. 24-2)to compare the assembled structure with the604

digital model. In (fig. 24-1), we observe that the longest overhang (2.6 m) of605

Archolumn has a deviation of 32 cm. This can be attributed to the flexibility606

of the bars and the imprecision of the assembly. The deviation is within the607
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acceptable range for temporary structures (within 9% of the total height)608

according to the design judgment, and it does not affect the overall stability609

of the structure. We leave the detailed analysis and improvement to reduce610

such deformation for future work.611

Figure 24: Qualitative analysis of the assembly results. (1) A point cloud scan of the

assembled Archolumn structure shows a maximum deflection of 32 cm at the longest

overhang (2.6 m), which is 10% of the total height. (2) AR overlay of the digital model

(pink) on the assembled Bloomdome structure.

6. Discussions612

6.1. Discussions of the results613

The proposed design optimization formulation and algorithm are demon-614

strated to automatically resolve contact assignment and bar configuration615

to find a feasible multi-tangent configuration for free-form line graph input.616

Various results have shown that by combining infinitely long bar formula-617

tion, linearization, and various constraint modeling techniques, our algorithm618

can turn the originally mixed-integer, bilevel optimization problem into a se-619

quence of mixed-integer linear programs and solve them successfully to obtain620

a feasible design solution.621
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In contrast to prior work that constraints input line graph’s topology,622

our approach opens up the design space of multi-tangent structures by of-623

fering the flexibility to find new contact patterns for any input line graph.624

While previous work fails to achieve exact tangency and model collisions, our625

method can enforce both as hard constraints, ensuring the physical feasibility626

of the resulting structure. We also show results that the proposed algorithm627

can adapt the design to different available bar stocks, where we observe that628

a stock with more diverse bar lengths can lead to a design that represents629

the original design more faithfully.630

Finally, we present two full-scale, real-world case studies to demonstrate631

the efficiency of assembly and the concept of reusability. AR-assisted assem-632

bly strategies are deployed for both off-site assembly of modules and on-site633

installation of them. The computational design approach and the assembly634

strategy allow us to rapidly design and build free-form structures using a635

given kit of parts, and disassemble one to realize another design with com-636

pletely different structural typology.637

6.2. Limitations and future work638

For computational design of multi-tangent structures, we see a number639

of limitations and opportunities for future work.640

Integration of structural and functional constraints. The current design algo-641

rithm only considers the geometric and connectivity aspects of the structure642

and does not consider functional objectives of the structure, e.g., as a load-643

bearing structure or a temporary shelter. Future work could integrate struc-644

tural equilibrium or elastic stiffness constraint into the optimization formula-645
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tion, or integrate the multi-tangent constraints into a topology optimization646

framework. New physics simulation techniques will also be needed to accu-647

rately capture the behaviors of multi-tangent structures under self-weight or648

external loads, which includes global kinematic response due to local joint649

mechanism, contact between bars, and elastic deformation. Additional ge-650

ometric constraints could be incorporated to facilitate the installation of651

cladding for sheltering or spatial separation purposes.652

Computational scalability. For a large design case, such as the box 4 × 4653

shown in section 5.3 and two case studies shown in section 5.4, our current654

algorithm struggles to find a feasible solution within a reasonable time frame.655

This is likely due to the discrete contact assignment variables growing expo-656

nentially with the number of edge counts in the input line graph, and the657

branch-and-bound algorithm of the MILP solver can not prune the search658

space effectively and easily get stuck in local minima. Although we have659

shown that the manual decomposition strategy offers a practical way to de-660

compose the problem into modules and solve each one in a reasonable amount661

of time, future work could investigate ways to automate the decomposition662

process, e.g. [13, 36].663

Multi-solution and user-control. While our proposed algorithm can find one664

feasible solution for a given line graph, there often exist many feasible solu-665

tions that could present different aesthetics or structural performance. Cur-666

rently, our algorithm does not offer users any direct control over the final667

design, which, although automated, may appear to be too inflexible for de-668

signers who want to have more granular control over the design. Future work669

thus could explore a more interactive, procedural design process where the670

49



user can guide the optimization process by providing feedback or constraints,671

or a design optimization algorithm that can generate a set of diverse feasible672

solutions.673

Material degradation and active bending. Although this work primarily uti-674

lizes industrially produced linear wooden bars, future studies should investi-675

gate the effects of material degradation due to repeated reuse cycles, includ-676

ing wear, environmental exposure, and load-induced fatigue. Understanding677

how these factors impact structural performance and longevity is crucial678

for substantiating claims of extended reusability. Future research should679

conduct experimental testing or historical data studies to document mate-680

rial longevity in practical reuse scenarios. Further exploration of materials681

that leverage inherent elasticity—such as natural bamboo or fiber-reinforced682

composites—could also enable innovative active bending structures. These683

alternative materials, however, will similarly require rigorous evaluation of684

degradation and fatigue mechanisms over multiple reuse cycles.685

7. Conclusion686

This work has presented a new way to design and build freeform bar687

structures with limited material resources that can be reused multiple times.688

We have proposed a computational framework to open up the design space of689

an existing construction system, called the multi-tangent bar structures, to690

accommodate freeform design intentions. Our core contribution is a new way691

to formulate this design problem, so that a naive, intractable optimization692

formulation can be transformed into a sequence of MILP problems that can693

be solved effectively by combining off-the-shelf MILP tools and a trust-region-694
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like optimization outer loop. We show that we can model several practical695

considerations, such as tangency, collisions, joint connectivity, etc., as linear696

constraints in the MILP formulation. Our simulated result demonstrate that697

the design algorithm can simultaneously offset bars and assign joints, and698

generate multi-tangent structures out of complex graph input, without con-699

straining the graph to have certain fixed topologies as in previous work. To700

validate our design algorithm and the concept of reusability, we physically701

built a generated design, disassembled it, and reused the kit to build another702

generated design.703

The tools presented in this paper provide temporary structures designers704

with an automated framework to assist in the design of freeform structures705

using a given kit of parts. The mathematical formulation presented could in-706

spire future research on the use of mathematical optimization to model part707

connectivity, collision, and resource availability of other structural systems.708

Specific to multi-tangent structures, this paper invites future research on in-709

tegrating structural consideration into the form-finding process, algorithmic710

scalability, and automatic structural decomposition for assembly.711

In a world that is facing resource scarcity and environmental challenges,712

designing more with less material becomes imperative for the designers of713

the built environment. We believe that the methods presented in this paper714

represents a fresh approach towards this vision.715
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Appendix A. Numerical treatment for infinite-length bar distance874

When the two bars are close parallel, the formula provided in eq. (3) to

calculate the distance between two infinite-length bar degenerates. We use

the following formulas to first compute a unit vector nij that is orthogonal

to both Li, Lj and then compute the distance:

nij = ((xi − xj)× ni)× nj (A.1)

d∞[Li, Lj] = nij/∥nij∥ · (xi − xj) (A.2)

When nij’s norm is close to zero, we randomly sample a vector that is

orthogonal to ni to replace nij in eq. (A.1). The first-order Taylor approxi-

mation d̂∞ of the distance function in eq. (A.2) is:

d̂∞[Li, Lj](dxi, dni, dxj, dni) :=

nij/∥nij∥ · (xi − xj) + nij · (dxi − dxj) (A.3)
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Appendix B. Complete MILP formulation875

max
dx,dn,z,t,y,r

r (B.1)

s.t. −∆k ≤ dxi, dni ≤ ∆k,∀ei ∈ E (B.2)

nk
i · dni = 0,∀ei ∈ E (B.3)

∀ei ∩ ej = v, ei, ej ∈ E

d̂∞[Li, Lj] ≤ 2r +Dc +M(1− zvi,j) (B.4)

d̂∞[Li, Lj] ≥ −(2r +Dc)−M(1− zvi,j) (B.5)

d̂∞[Li, Lj] ≥ 2r +Dc −M(1− svi,j) (B.6)

d̂∞[Li, Lj] ≤ −(2r +Dc) +Msvi,j (B.7)

d̂∞[Li, Lj] ≥ 2r −Mzvi,j −M(1− svi,j) (B.8)

d̂∞[Li, Lj] ≤ −2r +Mzvi,j +Msvi,j (B.9)

∀v ∈ V

0 ≤ yvi,j ≤ (|VJ(v)| − 1)zvi,j,∀(i, j) ∈ EJ(v) (B.10)∑
j∈VJ(v)

yvs,j = |VJ(v)| − 1 (B.11)

∑
j:(i,j)∈EJ(v)

yvi,j =
∑

j:(i,j)∈EJ(v)

yvj,i − 1,∀i ∈ VJ(v) \ {s} (B.12)

yvi,j = yvj,i (B.13)

∀ei ∩ ej = v, ei ∩ ek = v′

Ti,j − T̂i,j(x̂i, n̂i, x̂j, n̂j)−
∂Ti,j

∂xi

T

dxi −
∂Ti,j

∂ni

T

dni −
∂Ti,j

∂xj

T

dxj −
∂Ti,j

∂nj

T

dnj = 0

(B.14)

Ti,j − Ti,k ≤ lmax +M(1− zi,j) +M(1− zi,k) (B.15)
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Ti,k − Ti,j ≤ lmax +M(1− zi,j) +M(1− zi,k) (B.16)

r ≤ R

dx, dn ∈ R6|E|, z ∈ {0, 1}Ncp , t ∈ [0, 1]Ncp , y ∈ R2Ncp

62


	Introduction
	Multi-tangent structures

	Modeling multi-tangent systems with optimization
	Overview
	Decision variables
	Tangent constraint
	Collision constraint
	Joint connectivity constraint
	Available length constraint
	The general optimization formulation
	Challenges

	New formulation: domain linearization for infinitely long bar elements
	Modeling of infinitely long bar elements
	Delta design variables and linearized distance computation
	Linearized tangent and collision constraints with side switches
	Modeling joint connectivity as a commodity flow problem
	Maximum length of bar constraint
	The linearized optimization formulation with radius curriculmn
	Extension: Account for clamps

	Solving techniques
	Core algorithm: Sequential MILP
	Post-processing: bar length adjustment according to available bar stock

	Results
	Comparison with previous work on reciprocal structures
	Design responding to available materials
	Scalability analysis
	Real-world case studies
	Input line graph design strategies
	Augmented Reality-assisted assembly strategies
	Potential for reconfiguration
	Analysis of the assembly results


	Discussions
	Discussions of the results
	Limitations and future work

	Conclusion
	Numerical treatment for infinite-length bar distance
	Complete MILP formulation

